Very narrow coronal mass ejections producing solar energetic particles

Author:

Bronarska K.,Wheatland M. S.,Gopalswamy N.,Michalek G.

Abstract

Aims. Our main aim is to study the relationship between low-energy solar particles (energies below 1 MeV) and very narrow coronal mass ejections (“jets” with angular width ≤ 20°). Methods. For this purpose, we considered 125 very narrow coronal mass ejections (CMEs) from 1999 to 2003 that are potentially associated with low-energy solar particles (LESPs). These events were chosen on the basis of their source location. We studied only very narrow CMEs at the western limb, which are expected to have good magnetic connectivity with Earth. Results. We found 24 very narrow CMEs associated with energetic particles such as ions (protons and 3He), electrons, or both. We show that arrival times at Earth of energetic particles are consistent with onset times of the respective CMEs, and that in the same time intervals, there are no other potential sources of energetic particles. We also demonstrate statistical differences for the angular width distributions using the Kolmogorov–Smirnov test for angular widths for these 24 events. We consider a coherent sample of jets (mostly originating from boundaries of coronal holes) to identify properties of events that produce solar energetic particles (velocities, widths, and position angles). Our study presents a new approach and result: very narrow CMEs can generate low-energy particles in the vicinity of Earth without other activity on the Sun. The results could be very useful for space weather forecasting.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3