Disentangling hadronic from leptonic emission in the composite SNR G326.3−1.8

Author:

Devin J.,Acero F.,Ballet J.,Schmid J.

Abstract

Context. G326.3−1.8 (also known as MSH 15−56) has been detected in radio as middle-aged composite supernova remnant (SNR) consisting of an SNR shell and a pulsar wind nebula (PWN) that has been crushed by the SNR reverse shock. Previous γ-ray studies of SNR G326.3−1.8 revealed bright and extended emission with uncertain origin. Understanding the nature of the γ-ray emission allows probing the population of high-energy particles (leptons or hadrons), but can be challenging for sources of small angular extent. Aims. With the recent Fermi Large Area Telescope data release Pass 8, which provides increased acceptance and angular resolution, we investigate the morphology of this SNR to disentangle the PWN from the SNR contribution. In particular, we take advantage of the new possibility to filter events based on their angular reconstruction quality. Methods. We performed a morphological and spectral analysis from 300 MeV to 300 GeV. We used the reconstructed events with the best angular resolution (PSF3 event type) to separately investigate the PWN and the SNR emissions, which is crucial to accurately determine the spectral properties of G326.3−1.8 and understand its nature. Results. The centroid of the γ-ray emission evolves with energy and is spatially coincident with the radio PWN at high energies (E > 3 GeV). The morphological analysis reveals that a model considering two contributions from the SNR and the PWN reproduces the γ-ray data better than a single-component model. The associated spectral analysis using power laws shows two distinct spectral features, a softer spectrum for the remnant (Γ = 2.17 ± 0.06) and a harder spectrum for the PWN (Γ = 1.79 ± 0.12), consistent with hadronic and leptonic origin for the SNR and the PWN, respectively. Focusing on the SNR spectrum, we use one-zone models to derive some physical properties, and we find in particular, that the emission is best explained with a hadronic scenario in which the high target density is provided by radiative shocks in H I clouds struck by the SNR.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3