Studying star forming dwarf galaxies in Abell 779, Abell 1367, Coma, and Hercules clusters

Author:

Vaduvescu O.,Petropoulou V.,Reverte D.,Pinter V.

Abstract

Context. We continue to study star formation in dwarf galaxies located in nearby clusters. Aims. Known physical and chemical relations outlining the formation and evolution of dwarfs is compared in different environments, including the Local Volume (LV) and some nearby clusters studied previously. Methods. We used the TNG telescope for four nights in 2010 to acquire deep near-infrared imaging in K′ of 45 star forming dwarf galaxies located in the Abell 779, Abell 1367, Abell 1656 (Coma), and Abell 2151 (Hercules) clusters. Results. Surface photometry was approached based on past experience by using the sech law to account for the outer old stellar contribution plus a Gaussian component to model the inner starburst, proving the blue compact dwarf (BCD) classification of most targets. Sech central surface brightness, semimajor axis, sech, and total apparent magnitude were measured, allowing to estimate size, absolute luminosity and mass for all targets. Conclusions. The physical correlations between size, central brightness, and NIR luminosity appear to hold, but previously known linear fits break above MSK  =   − ​19 for Abell 779, Abell 1367 and especially for Hercules, while the dwarf fundamental plane (FP) is probed by only half cluster members, suggesting harassment by the denser cluster environments. Nevertheless, the chemical relations between the oxygen abundance, luminosity, gas mass, baryonic mass, and gas fraction in a closed box model are probed by most members of the four studied clusters, and the starburst grows linearly with the K′ luminosity.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep K-band surface brightness photometry of dE galaxies;Astronomy & Astrophysics;2023-07

2. E+A Galaxy Candidates in and around the Leo Cluster;Research Notes of the AAS;2021-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3