Photochemical escape of atomic C and N on Mars: clues from a multi-instrument MAVEN dataset

Author:

Cui J.,Wu X. -S.,Gu H.,Jiang F. -Y.,Wei Y.

Abstract

Context. Photochemical escape of hot atoms is crucial to the long-term evolution of the Martian climate. For atomic C and N, photochemical escape is primarily driven by photodissociation (PD) of CO and N2. Aims. Combining the Mars Atmosphere and Volatile Evolution (MAVEN) measurements of atmospheric neutral densities and solar EUV/X-ray irradiance, we perform a state-of-the-art analysis of atomic C and N escape on Mars. Methods. For each MAVEN orbit, we calculated the hot C and N production rates in the dayside Martian upper atmosphere via PD, from which the escape rates are estimated using a simplified technique to parameterize the respective escape probabilities taking into account multiple collisions with ambient neutrals. Results. The mean C and N escape rates are 1 × 1024 s−1 and 9 × 1024 s−1, appropriate for low to moderate solar activity conditions, and thermospheric PD makes a larger contribution to the total N escape than to the total C escape. The above differences highlight the importance of nascent energy, with more energetic nascent escaping atoms able to survive collisions with ambient neutrals more easily, thus extending down to deeper regions of the atmosphere. Solar cycle variation in C and N escape is revealed by our analysis, whereas solar zenith angle variation is absent for both species. These results could be explained by the fact that the production of nascent escaping atoms responds to varying solar illumination angle at low altitudes where the escape probability is negligible, but responds to varying level of solar EUV/X-ray irradiance at high altitudes where the atmosphere is essentially collisionless.

Funder

National Natural Science Foundation of China

Science and Technology Development Fund of Macau SAR

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3