Planetesimal formation in an evolving protoplanetary disk with a dead zone

Author:

Charnoz Sébastien,Pignatale Francesco C.,Hyodo Ryuki,Mahan Brandon,Chaussidon Marc,Siebert Julien,Moynier Frédéric

Abstract

Context. When and where planetesimals form in a protoplanetary disk are highly debated questions. Streaming instability is considered the most promising mechanism, but the conditions for its onset are stringent. Disk studies show that the planet forming region is not turbulent because of the lack of ionization forming possibly dead zones (DZs). Aims. We investigate planetesimal formation in an evolving disk, including the DZ and thermal evolution. Methods. We used a 1D time-evolving stratified disk model with composite chemistry grains, gas and dust transport, and dust growth. Results. Accretion of planetesimals always develops in the DZ around the snow line, due to a combination of water recondensation and creation of dust traps caused by viscosity variations close to the DZ. The width of the planetesimal forming region depends on the disk metallicity. For Z = Z, planetesimals form in a ring of about 1 au width, while for Z > 1.2 Z planetesimals form from the snow line up to the outer edge of the DZ ≃ 20 au. The efficiency of planetesimal formation in a disk with a DZ is due to the very low effective turbulence in the DZ and to the efficient piling up of material coming from farther away; this material accumulates in region of positive pressure gradients forming a dust trap due to viscosity variations. For Z = Z the disk is always dominated in terms of mass by pebbles, while for Z > 1.2 Z planetesimals are always more abundant than pebbles. If it is assumed that silicate dust is sticky and grows up to impact velocities ~10 m s−1, then planetesimals can form down to 0.1 au (close to the inner edge of the DZ). In conclusion the DZ seems to be a sweet spot for the formation of planetesimals: wide scale planetesimal formation is possible for Z > 1.2 Z. If hot silicate dust is as sticky as ice, then it is also possible to form planetesimals well inside the snow line.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3