Fraction of bolometric luminosity absorbed by dust in DustPedia galaxies

Author:

Bianchi S.ORCID,De Vis P.,Viaene S.,Nersesian A.,Mosenkov A. V.,Xilouris E. M.,Baes M.,Casasola V.,Cassarà L. P.,Clark C. J. R.,Davies J. I.,De Looze I.,Dobbels W.,Galametz M.,Galliano F.,Jones A. P.,Lianou S.,Madden S. C.,Trčka A.

Abstract

Aims. We aim to study the fraction of stellar radiation absorbed by dust, fabs, in 814 galaxies of different morphological types. The targets constitute the vast majority (93%) of the DustPedia sample, including almost all large (optical diameter larger than 1′), nearby (v ≤ 3000 km s−1) galaxies observed with the Herschel Space Observatory. Methods. For each object, we modelled the spectral energy distribution from the ultraviolet to the sub-millimetre using the dedicated, aperture-matched DustPedia photometry and the Code Investigating GALaxy Evolution (CIGALE). The value of fabs was obtained from the total luminosity emitted by dust and from the bolometric luminosity, which are estimated by the fit. Results. On average, 19% of the stellar radiation is absorbed by dust in DustPedia galaxies. The fraction rises to 25% if only late-type galaxies are considered. The dependence of fabs on morphology, showing a peak for Sb-Sc galaxies, is weak; it reflects a stronger, yet broad, positive correlation with the bolometric luminosity, which is identified for late-type, disk-dominated, high-specific-star-formation rate, gas-rich objects. We find no variation of fabs with inclination, at odds with radiative transfer models of edge-on galaxies. These results call for a self-consistent modelling of the evolution of the dust mass and geometry along the build-up of the stellar content. We also provide template spectral energy distributions in bins of morphology and luminosity and study the variation of fabs with stellar mass and specific star-formation rate. We confirm that the local Universe is missing the high fabs, luminous and actively star-forming objects necessary to explain the energy budget in observations of the extragalactic background light.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3