Author:
Aladro R.,König S.,Aalto S.,González-Alfonso E.,Falstad N.,Martín S.,Muller S.,García-Burillo S.,Henkel C.,van der Werf P.,Mills E.,Fischer J.,Costagliola F.,Krips M.
Abstract
Aiming to characterise the properties of the molecular gas in the ultra-luminous infrared galaxy Mrk 273 and its outflow, we used the NOEMA interferometer to image the dense-gas molecular tracers HCN, HCO+, HNC, HOC+ and HC3N at ∼86 GHz and ∼256 GHz with angular resolutions of 4ʺ̣9 × 4ʺ̣5 (∼3.7 × 3.4 kpc) and 0ʺ̣61 × 0ʺ̣55 (∼460 × 420 pc). We also modelled the flux of several H2O lines observed with Herschel using a radiative transfer code that includes excitation by collisions and far-infrared photons. The disc of the Mrk 273 north nucleus has two components with decoupled kinematics. The gas in the outer parts (R ∼ 1.5 kpc) rotates with a south-east to north-west direction, while in the inner disc (R ∼ 300 pc) follows a north-east to south-west rotation. The central 300 pc, which hosts a compact starburst region, is filled with dense and warm gas, and contains a dynamical mass of (4 −5) × 109 M⊙, a luminosity of L′HCN = (3–4) × 108 K km s−1 pc2, and a dust temperature of 55 K. At the very centre, a compact core with R ∼ 50 pc has a luminosity of LIR = 4 × 1011 L⊙ (30% of the total infrared luminosity), and a dust temperature of 95 K. The core is expanding at low velocities ∼50–100 km s−1, probably affected by the outflowing gas. We detect the blue-shifted component of the outflow, while the red-shifted counterpart remains undetected in our data. Its cold and dense phase reaches fast velocities up to ∼1000 km s−1, while the warm outflowing gas has more moderate maximum velocities of ∼600 km s−1. The outflow is compact, being detected as far as 460 pc from the centre in the northern direction, and has a mass of dense gas ≤8 × 108 M⊙. The difference between the position angles of the inner disc (∼70°) and the outflow (∼10°) indicates that the outflow is likely powered by the AGN, and not by the starburst. Regarding the chemistry in Mrk 273, we measure an extremely low HCO+/HOC+ ratio of 10 ± 5 in the inner disc of Mrk 273.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献