Crustal heating in accreting neutron stars from the nuclear energy-density functional theory

Author:

Fantina A. F.,Zdunik J. L.,Chamel N.,Pearson J. M.,Haensel P.,Goriely S.

Abstract

Context. X-ray observations of soft X-ray transients in quiescence suggest the existence of heat sources in the crust of accreted neutron stars. Heat is thought to be released by electroweak and nuclear processes triggered by the burying of ashes of X-ray bursts. Aims. The heating in the crust of accreting neutron stars is studied using a fully quantum approach taking consistently into account nuclear shell effects. Methods. To this end, we have followed the evolution of ashes made of 56Fe employing the nuclear energy-density functional theory. Both the outer and inner crusts are described using the same functional, thus ensuring a unified and thermodynamically consistent treatment. To assess the role of accretion on the structure of the crust, we have employed the set of accurately calibrated Brussels–Montreal functionals BSk19, BSk20, and BSk21, for which the equations of state of nonaccreted neutron stars have been already calculated. These energy-density functionals were fitted to the same set of nuclear masses but were simultaneously adjusted to realistic neutron-matter equations of state with different degrees of stiffness at suprasaturation densities. For comparison, we have also considered the SLy4 functional. Results. Due to nuclear shell effects, the interior of fully accreted crust is found to be much less stratified than in previous studies. In particular, large regions of the inner crust contain clusters with the magic number Z = 14. The heat deposited in the outer crust is tightly constrained by experimental atomic mass data. The shallow heating we obtain does not exceed 0.2 MeV per accreted nucleon and is therefore not enough to explain the cooling of some soft X-ray transients. The total heat released in the crust is very sensitive to details of the nuclear structure and is predicted to lie in the range from 1.5 MeV to 1.7 MeV per accreted nucleon. Conclusions. The evolution of an accreted matter element and therefore the location of heat sources are governed to a large extent by the existence of nuclear shell closures. Ignoring these effects in the inner crust, the total heat falls to ∼0.6 MeV per accreted nucleon.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3