A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE)

Author:

Boselli A.,Fossati M.,Consolandi G.,Amram P.,Ge C.,Sun M.,Anderson J. P.,Boissier S.,Boquien M.,Buat V.,Burgarella D.,Cortese L.,Côté P.,Cuillandre J. C.,Durrell P.,Epinat B.,Ferrarese L.,Fumagalli M.,Galbany L.,Gavazzi G.,Gómez-López J. A.,Gwyn S.,Hensler G.,Kuncarayakti H.,Marcelin M.,Mendes de Oliveira C.,Quint B. C.,Roediger J.,Roehlly Y.,Sanchez S. F.,Sanchez-Janssen R.,Toloba E.,Trinchieri G.,Vollmer B.

Abstract

We observed the late-type peculiar galaxy NGC 4424 during the Virgo Environmental Survey Tracing Galaxy Evolution (VESTIGE), a blind narrow-band Hα+[NII] imaging survey of the Virgo cluster carried out with MegaCam at the Canada-French-Hawaii Telescope (CFHT). The presence of a ∼110 kpc (in projected distance) HI tail in the southern direction indicates that this galaxy is undergoing a ram pressure stripping event. The deep narrow-band image revealed a low surface brightness (Σ(Hα) ≃ 4 × 10−18 erg s−1 cm−2 arcsec−2) ionised gas tail ∼10 kpc in length extending from the centre of the galaxy to the north-west, thus in the direction opposite to the HI tail. Chandra and XMM X-rays data do not show a compact source in the nucleus or an extended tail of hot gas, while IFU spectroscopy (MUSE) indicates that the gas is photo-ionised in the inner regions and shock-ionised in the outer parts. Medium-resolution (MUSE) and high-resolution (Fabry-Perot) IFU spectroscopy confirms that the ionised gas is kinematically decoupled from the stellar component and indicates the presence of two kinematically distinct structures in the stellar disc. The analysis of the SED of the galaxy indicates that the activity of star formation was totally quenched in the outer disc ∼250–280 Myr ago, while only reduced by ∼80% in the central regions. All this observational evidence suggests that NGC 4424 is the remnant of an unequal-mass merger that occurred ≲500 Myr ago when the galaxy was already a member of the Virgo cluster, and is now undergoing a ram pressure stripping event that has removed the gas and quenched the activity of star formation in the outer disc. The tail of ionised gas probably results from the outflow produced by a central starburst fed by the collapse of gas induced by the merging episode. This outflow is sufficiently powerful to overcome the ram pressure induced by the intracluster medium on the disc of the galaxy crossing the cluster. This analysis thus suggests that feedback can participate in the quenching process of galaxies in high-density regions.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3