Solar flares and Kelvin-Helmholtz instabilities: A parameter survey

Author:

Ruan W.,Xia C.,Keppens R.

Abstract

Context. Hard X-ray (HXR) sources are frequently observed near the top of solar flare loops, which are also bright in soft X-ray (SXR) and extreme ultraviolet (EUV) wavebands. We revisit a recent scenario proposed by Fang et al. (2016) to trigger loop-top turbulence in flaring loops, which can help explain variations seen in SXR and EUV brightenings and potentially impact and induce HXR emission. It is conjectured that evaporation flows from flare-impacted chromospheric footpoints interact with each other near the loop top and produce turbulence via the Kelvin–Helmholtz instability (KHI). Aims. By performing a rigorous parameter survey, in which we vary the duration, total amount, and asymmetry of the energy deposition at both footpoints, we assess the relevance of the KHI in triggering and sustaining loop-top turbulence. We synthesize SXR and EUV emission and discuss the possibility of HXR emission through bremsstrahlung or inverse Compton processes, which scatter SXR photons to HXR photons via the inverse Compton mechanism. Methods. We performed 2.5D numerical simulations in which the magnetohydrodynamic model incorporates a realistic photosphere to coronal stratification, parametrized heating, radiative losses, and field-aligned anisotropic thermal conduction. We focus on the trigger of the KHI and the resulting turbulence, as well as identify various oscillatory patterns that appear in the evolutions. Results. We find that a M2.2-class related amount of energy should be deposited in less than four minutes to trigger a KHI interaction. Slower deposition, or lesser energy (< 0.33 × 1029 ergs) rather leads to mere loop-top compression sites bounded by shocks, without KHI development. Asymmetry in the footpoint deposition determines whether the KHI turbulent zone gets produced away from the apex, and asymmetric cases can show a slow-mode mediated, periodic displacement of the turbulent zone. Our reference simulation further demonstrates a clear 25 s periodicity in the declining phase of the SXR light curve, wherein compressional effects dominate. Conclusions. When turbulence is produced in the loop apex, an index of −5/3 can be found in the spectra of velocity and magnetic field fluctuations. Typical values for M-class flares routinely show KHI development. The synthesized SXR light curve shows a clear periodic signal related to the sloshing motion of the vortex pattern created by the KHI.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3