The hunt for self-similar core collapse

Author:

Pavlík VáclavORCID,Šubr Ladislav

Abstract

Context. Core collapse is a prominent evolutionary stage of self-gravitating systems. In an idealised collisionless approximation, the region around the cluster core evolves in a self-similar way prior to the core collapse. Thus, its radial density profile outside the core can be described by a power law, ρ ∝ rα. Aims. We aim to find the characteristics of core collapse in N-body models. In such systems, a complete collapse is prevented by transferring the binding energy of the cluster to binary stars. The contraction is, therefore, more difficult to identify. Methods. We developed a method that identifies the core collapse in N-body models of star clusters based on the assumption of their homologous evolution. Results. We analysed different models (equal- and multi-mass), most of which exhibit patterns of homologous evolution, yet with significantly different values of α : the equal-mass models have α ≈ 2.3, which agrees with theoretical expectations, the multi-mass models have α ≈ 1.5 (yet with larger uncertainty). Furthermore, most models usually show sequences of separated homologous collapses with similar properties. Finally, we investigated a correlation between the time of core collapse and the time of formation of the first hard binary star. The binding energy of such a binary usually depends on the depth of the collapse in which it forms, for example from 100 kT to 104kT in the smallest equal-mass to the largest multi-mass model, respectively. However, not all major hardenings of binaries happened during the core collapse. In the multi-mass models, we see large transfers of binding energy of ∼104kT to binaries that occur on the crossing timescale and outside of the periods of the homologous collapses.

Funder

Grantová Agentura, Univerzita Karlova

Univerzita Karlova v Praze

Grantová Agentura České Republiky

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference32 articles.

1. Aarseth S. J. 1972, in Gravitational N-Body Simulations, ed. Lecar M. (Cambridge, UK: Cambridge University Press), 88

2. Aarseth S. J. 2003, Gravitational N-Body Simulations (Cambridge, UK: Cambridge University Press)

3. Parameters of core collapse

4. Binney J., & Tremaine S. 1994, Galactic Dynamics (Princeton, NJ: Princeton University Press)

5. Gravothermal oscillations in multicomponent models of star clusters

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3