V902 Monocerotis: A likely disc-accreting intermediate polar

Author:

Worpel H.,Schwope A. D.,Traulsen I.,Mukai K.,Ok S.

Abstract

Aims. We aim to confirm whether the eclipsing cataclysmic variable (CV) V902 Mon is an intermediate polar (IP), to characterise its X-ray spectrum and flux, and to refine its orbital ephemeris and spin period. Methods. We performed spectrographic observations of V902 Mon in 2016 with the 2.2 m Calar Alto telescope, and X-ray photometry and spectroscopy with XMM-Newton in October 2017. This data was supplemented by several years of AAVSO visual photometry. Results. We confirmed V902 Mon as an IP based on detecting the spin period, which has a value of 2208 s, at multiple epochs. Spectroscopy of the donor star and Gaia parallax yield a distance of 3.5−0.9+1.3 kpc, suggesting an X-ray luminosity one or two orders of magnitude lower than the 1033 erg s−1 typical of previously known IPs. The X-ray to optical flux ratio is also very low. The inclination of the system is more than 79°, and is most likely a value of around 82°. We have refined the eclipse ephemeris, stable over 14 000 cycles. The Hα line is present throughout the orbital cycle and is clearly present during eclipse, suggesting an origin distant from the white dwarf, and shows radial velocity variations at the orbital period. The amplitude and overall recessional velocity seem inconsistent with an origin in the disc. The XMM-Newton observation reveals a partially absorbed plasma model typical of magnetic CVs, that has a fluorescent iron line at 6.4 keV showing a large equivalent width of 1.4 keV. Conclusions. V902 Mon is an IP, and probably a member of the hypothesized X-ray underluminous class of IPs. It is likely to be a disc accretor, although the radial velocity behaviour of the Hα line remains puzzling. The large equivalent width of the fluorescent iron line, the small FX/Fopt ratio, and the only marginal detection of X-ray eclipses suggests that the X-ray emission arises from scattering.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3