A LOFAR search for steep-spectrum pulsars in supernova remnants and pulsar wind nebulae

Author:

Straal S. M.,van Leeuwen J.

Abstract

Pinpointing a pulsar in its parent supernova remnant (SNR) or resulting pulsar wind nebula (PWN) is key to understanding its formation history and the pulsar wind mechanism, yet only about half the SNRs and PWNe appear associated with a pulsar. Our aim was to find the pulsars in a sample of eight known and new SNRs and PWNe. Using the LOFAR radio telescope at 150 MHz, each source was observed for 3 h. We covered the entire remnants where needed, by employing many tied-array beams to tile out even the largest objects. For objects with a confirmed point source or PWN we constrained our search to those lines of sight. We identified a promising radio pulsar candidate towards PWN G141.2+5.0. The candidate, PSR J0337+61, has a period of 94 ms and a DM of 226 pc cm−3. We re-observed the source twice with increased sensitivities of 30% and 50%, but did not re-detect it. It thus remains unconfirmed. For our other sources we obtain very stringent upper limits of 0.8 − 3.1 mJy at 150 MHz. Generally, we can rule out that the pulsars travelled out of the remnant. From these strict limits we conclude our non-detections towards point sources and PWNe are the result of beaming and propagation effects. Some of the remaining SNRs should host a black hole rather than a neutron star.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference102 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3