Author:
Monari G.,Famaey B.,Carrillo I.,Piffl T.,Steinmetz M.,Wyse R. F. G.,Anders F.,Chiappini C.,Janßen K.
Abstract
We measure the escape speed curve of the Milky Way based on the analysis of the velocity distribution of ~2850 counter-rotating halo stars from the Gaia Data Release 2. The distances were estimated through the StarHorse code, and only stars with distance errors smaller than 10% were used in the study. The escape speed curve is measured at Galactocentric radii ranging from ~5 kpc to ~10.5 kpc. The local Galactic escape at the Sun’s position is estimated to be ve(r⊙) = 580 ± 63 km s−1, and it rises towards the Galactic centre. Defined as the minimum speed required to reach three virial radii, our estimate of the escape speed as a function of radius implies for a Navarro–Frenk–White profile and local circular velocity of 240 km s−1 a dark matter mass M200 = 1.28−0.50+0.68 × 1012 M⊙ and a high concentration c200 = 11.09−1.79+2.94. Assuming the mass-concentration relation of ΛCDM, we obtain M200 = 1.55−0.51+0.64 × 1012 M⊙ and c200 = 7.93−0.27+0.33 for a local circular velocity of 228 km s−1.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
103 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献