Mass and shape of the Milky Way’s dark matter halo with globular clusters from Gaia and Hubble

Author:

Posti LorenzoORCID,Helmi Amina

Abstract

Aims. We estimate the mass of the inner (< 20 kpc) Milky Way and the axis ratio of its inner dark matter halo using globular clusters as tracers. At the same time, we constrain the distribution in phase-space of the globular cluster system around the Galaxy. Methods. We use the Gaia Data Release 2 catalogue of 75 globular clusters’ proper motions and recent measurements of the proper motions of another 20 distant clusters obtained with the Hubble Space Telescope. We describe the globular cluster system with a distribution function (DF) with two components: a flat, rotating disc-like one and a rounder, more extended halo-like one. While fixing the Milky Way’s disc and bulge, we let the mass and shape of the dark matter halo and we fit these two parameters, together with six others describing the DF, with a Bayesian method. Results. We find the mass of the Galaxy within 20 kpc to be M(<20 kpc) = 1.91−0.17+0.18×1011 M, of which MDM(<20 kpc) = 1.37−0.17+0.18×1011 M is in dark matter, and the density axis ratio of the dark matter halo to be q = 1.30 ± 0.25. Assuming a concentration-mass relation, this implies a virial mass Mvir = 1.3±0.3×1012 M. Our analysis rules out oblate (q <  0.8) and strongly prolate halos (q >  1.9) with 99% probability. Our preferred model reproduces well the observed phase-space distribution of globular clusters and has a disc component that closely resembles that of the Galactic thick disc. The halo component follows a power-law density profile ρ ∝ r−3.3, has a mean rotational velocity of Vrot ≃ −14km s−1 at 20 kpc, and has a mildly radially biased velocity distribution (β ≃ 0.2 ± 0.07, which varies significantly with radius only within the inner 15 kpc). We also find that our distinction between disc and halo clusters resembles, although not fully, the observed distinction in metal-rich ([Fe/H] > −0.8) and metal-poor ([Fe/H] ≤ −0.8) cluster populations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 152 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3