SPHERE/ZIMPOL high resolution polarimetric imager

Author:

Schmid H. M.,Bazzon A.,Roelfsema R.,Mouillet D.,Milli J.,Menard F.,Gisler D.,Hunziker S.,Pragt J.,Dominik C.,Boccaletti A.,Ginski C.,Abe L.,Antoniucci S.,Avenhaus H.,Baruffolo A.,Baudoz P.,Beuzit J.L.,Carbillet M.,Chauvin G.,Claudi R.,Costille A.,Daban J.-B.,de Haan M.,Desidera S.,Dohlen K.,Downing M.,Elswijk E.,Engler N.,Feldt M.,Fusco T.,Girard J. H.,Gratton R.,Hanenburg H.,Henning Th.,Hubin N.,Joos F.,Kasper M.,Keller C. U.,Langlois M.,Lagadec E.,Martinez P.,Mulder E.,Pavlov A.,Podio L.,Puget P.,Quanz S. P.,Rigal F.,Salasnich B.,Sauvage J.-F.,Schuil M.,Siebenmorgen R.,Sissa E.,Snik F.,Suarez M.,Thalmann Ch.,Turatto M.,Udry S.,van Duin A.,van Holstein R. G.,Vigan A.,Wildi F.

Abstract

Context. The SPHERE “planet finder” is an extreme adaptive optics (AO) instrument for high resolution and high contrast observations at the Very Large Telescope (VLT). We describe the Zurich Imaging Polarimeter (ZIMPOL), the visual focal plane subsystem of SPHERE, which pushes the limits of current AO systems to shorter wavelengths, higher spatial resolution, and much improved polarimetric performance. Aims. We present a detailed characterization of SPHERE/ZIMPOL which should be useful for an optimal planning of observations and for improving the data reduction and calibration. We aim to provide new benchmarks for the performance of high contrast instruments, in particular for polarimetric differential imaging. Methods. We have analyzed SPHERE/ZIMPOL point spread functions (PSFs) and measure the normalized peak surface brightness, the encircled energy, and the full width half maximum (FWHM) for different wavelengths, atmospheric conditions, star brightness, and instrument modes. Coronagraphic images are described and the peak flux attenuation and the off-axis flux transmission are determined. Simultaneous images of the coronagraphic focal plane and the pupil plane are analyzed and the suppression of the diffraction rings by the pupil stop is investigated. We compared the performance at small separation for different coronagraphs with tests for the binary α Hyi with a separation of 92 mas and a contrast of Δm ≈ 6m. For the polarimetric mode we made the instrument calibrations using zero polarization and high polarization standard stars and here we give a recipe for the absolute calibration of polarimetric data. The data show small (< 1 mas) but disturbing differential polarimetric beam shifts, which can be explained as Goos-Hähnchen shifts from the inclined mirrors, and we discuss how to correct this effect. The polarimetric sensitivity is investigated with non-coronagraphic and deep, coronagraphic observations of the dust scattering around the symbiotic Mira variable R Aqr. Results. SPHERE/ZIMPOL reaches routinely an angular resolution (FWHM) of 22−28 mas, and a normalized peak surface brightness of SB0mstar ≈ −6.5m arcsec−2 for the V-, R- and I-band. The AO performance is worse for mediocre ≳1.0″ seeing conditions, faint stars mR ≳ 9m, or in the presence of the “low wind” effect (telescope seeing). The coronagraphs are effective in attenuating the PSF peak by factors of > 100, and the suppression of the diffracted light improves the contrast performance by a factor of approximately two in the separation range 0.06″−0.20″. The polarimetric sensitivity is Δp < 0.01% and the polarization zero point can be calibrated to better than Δp ≈ 0.1%. The contrast limits for differential polarimetric imaging for the 400 s I-band data of R Aqr at a separation of ρ = 0.86″ are for the surface brightness contrast SBpol( ρ)−mstar ≈ 8m arcsec−2 and for the point source contrast mpol( ρ)−mstar ≈ 15m and much lower limits are achievable with deeper observations. Conclusions. SPHERE/ZIMPOL achieves imaging performances in the visual range with unprecedented characteristics, in particular very high spatial resolution and very high polarimetric contrast. This instrument opens up many new research opportunities for the detailed investigation of circumstellar dust, in scattered and therefore polarized light, for the investigation of faint companions, and for the mapping of circumstellar Hα emission.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3