VLT/FLAMES high-resolution chemical abundances in Sculptor: a textbook dwarf spheroidal galaxy

Author:

Hill V.,Skúladóttir Á.,Tolstoy E.,Venn K. A.,Shetrone M. D.,Jablonka P.,Primas F.,Battaglia G.,de Boer T. J. L.,François P.,Helmi A.,Kaufer A.,Letarte B.,Starkenburg E.,Spite M.

Abstract

We present detailed chemical abundances for 99 red-giant branch stars in the centre of the Sculptor dwarf spheroidal galaxy, which have been obtained from high-resolution VLT/FLAMES spectroscopy. The abundances of Li, Na, α-elements (O, Mg, Si, Ca Ti), iron-peak elements (Sc, Cr, Fe, Co, Ni, Zn), and r- and s-process elements (Ba, La, Nd, Eu) were all derived using stellar atmosphere models and semi-automated analysis techniques. The iron abundances populate the whole metallicity distribution of the galaxy with the exception of the very low metallicity tail, −2.3 ≤ [Fe/H] ≤ −0.9. There is a marked decrease in [α/Fe] over our sample, from the Galactic halo plateau value at low [Fe/H] and then, after a “knee”, a decrease to sub-solar [α/Fe] at high [Fe/H]. This is consistent with products of core-collapse supernovae dominating at early times, followed by the onset of supernovae type Ia as early as ∼12 Gyr ago. The s-process products from low-mass AGB stars also participate in the chemical evolution of Sculptor on a timescale comparable to that of supernovae type Ia. However, the r-process is consistent with having no time delay relative to core-collapse supernovae, at least at the later stages of the chemical evolution in Sculptor. Using the simple and well-behaved chemical evolution of Sculptor, we further derive empirical constraints on the relative importance of massive stars and supernovae type Ia to the nucleosynthesis of individual iron-peak and α-elements. The most important contribution of supernovae type Ia is to the iron-peak elements: Fe, Cr, and Mn. There is, however, also a modest but non-negligible contribution to both the heavier α-elements: S, Ca and Ti, and some of the iron-peak elements: Sc and Co. We see only a very small or no contribution to O, Mg, Ni, and Zn from supernovae type Ia in Sculptor. The observed chemical abundances in Sculptor show no evidence of a significantly different initial mass function, compared to that of the Milky Way. With the exception of neutron-capture elements at low [Fe/H], the scatter around mean trends in Sculptor for [Fe/H] >  −2.3 is extremely low, and compatible with observational errors. Combined with the small scatter in the age-elemental abundances relation, this calls for an efficient mixing of metals in the gas in the centre of Sculptor since ∼12 Gyr ago.

Funder

Sofja Kovalevskaja Award, Alexander von Humboldt Foundation

Ramon y Cajal Programme, the Spanish Ministry of Economy and Competitive- ness

Emmy Noether programme,

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3