HyGAL: Characterizing the Galactic ISM with observations of hydrides and other small molecules

Author:

Kim W.-J.ORCID,Schilke P.ORCID,Neufeld D. A.ORCID,Jacob A. M.ORCID,Sánchez-Monge Á.ORCID,Seifried D.ORCID,Godard B.ORCID,Menten K. M.,Walch S.ORCID,Falgarone E.,Veena V. S.ORCID,Bialy S.ORCID,Möller T.ORCID,Wyrowski F.

Abstract

As a complement to the HyGAL Stratospheric Observatory for Infrared Astronomy Legacy Program, we report the results of a groundbased absorption line survey of simple molecules in diffuse and translucent Galactic clouds. Using the Institut de Radioastronomie Millimétrique (IRAM) 30 m telescope, we surveyed molecular lines in the 2 mm and 3 mm wavelength ranges toward 15 millimeter continuum sources. These sources, which are all massive star-forming regions located mainly in the first and second quadrants of the Milky Way, form the subset of the HyGAL sample that can be observed by the IRAM 30 m telescope. We detected HCO+ absorption lines toward 14 sightlines, toward which we identified 78 foreground cloud components, as well as lines from HCN, HNC, C2H, and c-C3H2 toward most sightlines. In addition, CS and H2S absorption lines are found toward at least half of the continuum sources. The spectral line data obtained were analyzed to characterize the chemical and physical properties of the absorbing interstellar medium statistically. The column density ratios of the seven molecular species observed are very similar to values found in previous absorption line studies carried out toward diffuse clouds at high latitudes. As expected, the C2H and c-C3H2 column densities show a tight correlation with that of N(HCO+), because of these all these molecules are considered to be proxies for the H2 column density toward diffuse and translucent clouds. The HCN and HNC column densities, by contrast, exhibit nonlinear correlations with those of C2H, c-C3H2, and HCO+, increasing rapidly at Av ≈ 1 in translucent clouds. Static Meudon photodissociation region (PDR) isobaric models that consider ultraviolet-dominated chemistry were unable to reproduce the column densities of all seven molecular species by just a factor of a few, except for H2S. The inclusion of other formation routes driven by turbulent dissipation could possibly explain the observed high column densities of these species in diffuse clouds. There is a tentative trend for H2S and CS abundances relative to H2 to be larger in diffuse clouds (X(H2S) and X(CS) ~ 10−8−10−7) than in translucent clouds (X(H2S) and X(CS) ~ 10−9−10−8) toward a small sample; however, a larger sample is required in order to confirm this trend. The derived H2S column densities are higher than the values predicted from the isobaric PDR models, suggesting that chemical desorption of H2S from sulfur-containing ice mantles may play a role in increasing the H2S abundance.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3