JWST/MIRI coronagraphic performances as measured on-sky

Author:

Boccaletti A.ORCID,Cossou C.ORCID,Baudoz P.ORCID,Lagage P. O.,Dicken D.,Glasse A.,Hines D. C.ORCID,Aguilar J.ORCID,Detre O.ORCID,Nickson B.,Noriega-Crespo A.,Gáspár A.ORCID,Labiano A.ORCID,Stark C.,Rouan D.ORCID,Reess J. M.,Wright G. S.,Rieke G.,Garcia Marin M.,Lajoie C.,Girard J.ORCID,Perrin M.,Soummer R.ORCID,Pueyo L.

Abstract

Context. Characterization of directly imaged exoplanets is one of the most eagerly anticipated science functions of the James Webb Space Telescope. MIRI, the mid-IR instrument, has the capability to provide unique spatially resolved photometric data points in a spectral range never before achieved for such objects. Aims. We aim to present the very first on-sky contrast measurements of the MIRI coronagraphs. In addition to a classical Lyot coronagraph at the longest wavelength, this observing mode implements the concept of the four-quadrant phase mask for the very first time in a space telescope. Methods. We observed single stars together with a series of reference stars to measure raw contrasts as they are delivered on the detector, as well as reference-subtracted contrasts. Results. The MIRI coronagraphs achieve raw contrasts better than 10−3 at the smallest angular separations (within 1″) and about 10−5 farther out (beyond 5 ~ 6″). Subtracting the residual diffracted light left behind the coronagraph has the potential to bring the final contrast down to the background- and detector-limited noise floor at most angular separations (a few times 10−5 at less than 1″). Conclusions. The MIRI coronagraphs behave as expected from simulations. In particular, the raw contrasts for all four coronagraphs are fully consistent with the diffractive model. Contrasts obtained by subtracting reference stars also meet expectations and are fully demonstrated for two four-quadrant phase masks (F1065C and F1140C). The worst contrast, measured at F1550C, is very likely due to a variation in the phase aberrations at the primary mirror during the observations, and not an issue with the coronagraph itself. We did not perform reference star subtraction with the Lyot mask at F2300C, but we anticipate that it would bring the contrast down to the noise floor.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3