The Cygnus Allscale Survey of Chemistry and Dynamical Environments: CASCADE

Author:

Beuther H.,Wyrowski F.,Menten K. M.,Winters J. M.,Suri S.,Kim W.-J.,Bouscasse L.,Gieser C.,Sawczuck M.,Christensen I. B.,Skretas I. M.

Abstract

Context. While star formation on large molecular cloud scales and on small core and disk scales has been investigated intensely over the past decades, the connection of the large-scale interstellar material with the densest small-scale cores has been a largely neglected field. Aims. We wish to understand how the gas is fed from clouds down to cores. This covers dynamical accretion flows as well as the physical and chemical gas properties over a broad range of spatial scales. Methods. Using the IRAM facilities NOEMA and the IRAM 30 m telescope, we mapped large areas (640 arcmin2) of the archetypical star formation complex Cygnus X at 3.6 mm wavelengths in line and continuum emission. The data were combined and imaged together to cover all accessible spatial scales. Results. The scope and outline of The Cygnus Allscale Survey of Chemistry and Dynamical Environments (CASCADE) as part of the Max Planck IRAM Observatory Program (MIOP) is presented. We then focus on the first observed subregion in Cygnus X, namely the DR20 star formation site, which comprises sources in a range of evolutionary stages from cold pristine gas clumps to more evolved ultracompact Hii regions. The data covering cloud to cores scales at a linear spatial resolution of <5000 au reveal several kinematic cloud components that may be part of several large-scale flows around the central cores. The temperature structure of the region is investigated by means of the HCN/HNC intensity ratio and compared to dust-derived temperatures. We find that the deuterated DCO+ emission is almost exclusively located toward regions at low temperatures below 20 K. Investigating the slopes of spatial power spectra of dense gas tracer intensity distributions (HCO+, H13CO+, and N2H+), we find comparatively flat slopes between −2.9 and −2.6, consistent with high Mach numbers and/or active star formation in DR20. Conclusions. This MIOP large program on star formation in Cygnus X provides unique new data connecting cloud with core scales. The analysis of the DR20 data presented here highlights the potential of this program to investigate in detail the different physical and chemical aspects and their interrelations from the scale of the natal molecular cloud down to the scale of accretion onto the individual protostellar cores.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3