Structure and evolution of ultra-massive white dwarfs in general relativity

Author:

Althaus Leandro G.,Camisassa María E.,Torres Santiago,Battich Tiara,Córsico Alejandro H.,Rebassa-Mansergas Alberto,Raddi Roberto

Abstract

Context. Ultra-massive white dwarfs (M ≳ 1.05 M) are of utmost importance in view of the role they play in type Ia supernovae explosions, merger events, the existence of high-magnetic -field white dwarfs, and the physical processes in the super asymptotic giant branch phase. Aims. We aim to present the first set of constant rest-mass ultra-massive oxygen-neon white dwarf cooling tracks with masses of M >  1.29 M which fully take into account the effects of general relativity on their structural and evolutionary properties. Methods. We computed the full evolution sequences of 1.29, 1.31, 1.33, 1.35, and 1.369 M white dwarfs with the La Plata stellar evolution code, LPCODE. For this work, the standard equations of stellar structure and evolution have been modified to include the effects of general relativity. Specifically, the fully general relativistic partial differential equations governing the evolution of a spherically symmetric star are solved in a way so that they resemble the standard Newtonian equations of stellar structure. For comparison purposes, the same sequences have been computed for the Newtonian case. Results. According to our calculations, the evolutionary properties of the most massive white dwarfs are strongly modified by general relativity effects. In particular, the resulting stellar radius is markedly smaller in the general relativistic case, being up to 25% smaller than predicted by the Newtonian treatment for the more massive ones. We find that oxygen-neon white dwarfs more massive than 1.369 M become gravitationally unstable with respect to general relativity effects. When core chemical distribution due to phase separation on crystallization is considered, such instability occurs at somewhat lower stellar masses, ≳1.36 M. In addition, cooling times for the most massive white dwarf sequences are about a factor of two smaller than in the Newtonian case at advanced stages of evolution. Finally, a sample of white dwarfs have been identified as ideal candidates to test these general relativistic effects. Conclusions. We conclude that the general relativity effects should be taken into account for an accurate assessment of the structural and evolutionary properties of the most massive white dwarfs. These new ultra-massive white dwarf models constitute a considerable improvement over those computed in the framework of the standard Newtonian theory of stellar interiors.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Extremely Massive White Dwarf Escaped from the Hyades Star Cluster;The Astrophysical Journal Letters;2023-10-01

2. General relativistic pulsations of ultra-massive ZZ Ceti stars;Monthly Notices of the Royal Astronomical Society;2023-07-26

3. Relativistic Corrections in White Dwarf Asteroseismology;The Astrophysical Journal;2023-07-01

4. Carbon–oxygen ultra-massive white dwarfs in general relativity;Monthly Notices of the Royal Astronomical Society;2023-06-08

5. Search of nearby resolved neutron stars among optical sources;Monthly Notices of the Royal Astronomical Society;2023-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3