Perturbed precessing ellipses as the building blocks of spiral arms in a barred galaxy with two pattern speeds

Author:

Harsoula M.,Efthymiopoulos C.,Contopoulos G.,Tzemos A. C.

Abstract

Observations and simulations of barred spiral galaxies have shown that, in general, the spiral arms rotate at a different pattern speed to that of the bar. The main conclusion from the bibliography is that the bar rotates faster than the spiral arms with a double or even a triple value of angular velocity. The theory that prevails in explaining the formation of the spiral arms in the case of a barred spiral galaxy with two pattern speeds is the manifold theory, where the orbits that support the spiral density wave are chaotic, and are related to the manifolds emanating from the Lagrangian points L1 and L2 at the end of the bar. In the present study, we consider an alternative scenario in the case where the bar rotates fast enough in comparison with the spiral arms and the bar potential can be considered as a perturbation of the spiral potential. In this case, the stable elliptical orbits that support the spiral density wave (in the case of grand design galaxies) are transformed into quasiperiodic orbits (or 2D tori) with a certain thickness. The superposition of these perturbed preccesing ellipses for all the energy levels of the Hamiltonian creates a slightly perturbed symmetrical spiral density wave.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Families of eccentric resonant orbits in galaxy discs: backbones for bars and spirals;Monthly Notices of the Royal Astronomical Society;2024-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3