Abstract
Context. The space density of X-ray-luminous, blindly selected active galactic nuclei (AGN) traces the population of rapidly accreting super-massive black holes through cosmic time. It is encoded in the X-ray luminosity function, whose bright end remains poorly constrained in the first billion years after the Big Bang as X-ray surveys have thus far lacked the required cosmological volume. With the eROSITA Final Equatorial-Depth Survey (eFEDS), the largest contiguous and homogeneous X-ray survey to date, X-ray AGN population studies can now be extended to new regions of the luminosity–redshift space (L2 − 10 keV > 1045 erg s−1 and z > 6).
Aims. The current study aims at identifying luminous quasars at z > 5.7 among X-ray-selected sources in the eFEDS field in order to place a lower limit on black hole accretion well into the epoch of re-ionisation. A secondary goal is the characterisation of the physical properties of these extreme coronal emitters at high redshifts.
Methods. Cross-matching eFEDS catalogue sources to optical counterparts from the DESI Legacy Imaging Surveys, we confirm the low significance detection with eROSITA of a previously known, optically faint z = 6.56 quasar from the Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs) survey. We obtained a pointed follow-up observation of the source with the Chandra X-ray telescope in order to confirm the low-significance eROSITA detection. Using new near-infrared spectroscopy, we derived the physical properties of the super-massive black hole. Finally, we used this detection to infer a lower limit on the black hole accretion density rate at z > 6.
Results. The Chandra observation confirms the eFEDS source as the most distant blind X-ray detection to date. The derived X-ray luminosity is high with respect to the rest-frame optical emission of the quasar. With a narrow MgII line, low derived black hole mass, and high Eddington ratio, as well as its steep photon index, the source shows properties that are similar to local narrow-line Seyfert 1 galaxies, which are thought to be powered by young super-massive black holes. In combination with a previous high-redshift quasar detection in the field, we show that quasars with L2 − 10 keV > 1045 erg s−1 dominate accretion onto super-massive black holes at z ∼ 6.
Funder
DFG, German Research Foundation
Natural Science Foundation of China
Marie Sklodowska-Curie Actions
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献