Multi-campaign asteroseismic analysis of eight solar-like pulsating stars observed by the K2 mission

Author:

González-Cuesta L.ORCID,Mathur S.ORCID,García R. A.ORCID,Pérez Hernández F.ORCID,Delsanti V.,Breton S. N.ORCID,Hedges C.,Jiménez A.,Della Gaspera A.,El-Issami M.,Fox V.,Godoy-Rivera D.ORCID,Pitot S.,Proust N.

Abstract

The NASA K2 mission that succeeded the nominal Kepler mission observed several hundred thousand stars during its operations. While most of the stars were observed in single campaigns of ∼80 days, some of them were targeted for more than one campaign. We perform an asteroseismic study of a sample of eight solar-like stars observed during K2 Campaigns 6 and 17, allowing us access to up to 160 days of data. With these two observing campaigns, we determine not only the stellar parameters but also study the rotation and magnetic activity of these stars. We first extract the light curves for the two campaigns using two different pipelines, EVEREST and Lightkurve. The seismic analysis is done on the combined light curve of C6 and C17, where the gap between them was removed and the two campaigns were ‘stitched’ together. We determine the global seismic parameters of the solar-like oscillations using two different methods: one using the A2Z pipeline and the other the Bayesian apollinaire code. With the latter, we also perform the peak-bagging of the modes to characterize their individual frequencies. By combining the frequencies with the Gaia DR2 effective temperature and luminosity, and metallicity for five of the targets, we determine the fundamental parameters of the targets using the IACgrids based on the MESA (Modules for Experiments in Stellar Astrophysics) code. We find that four of the stars are on the main sequence, two stars are about to leave it, and two stars are more evolved (a subgiant and an early red giant). While the masses and radii of our targets probe a similar parameter space compared to the Kepler solar-like stars, with detailed modeling, we find that for a given mass our more evolved stars seem to be older than previous seismic stellar ensembles. We calculate the stellar parameters using two different grids of models, one incorporating and one excluding the treatment of diffusion, and find that the results agree generally within the uncertainties, except for the ages. The ages obtained using the models that exclude diffusion are older, with differences of greater than 10% for most stars. The seismic radii and the Gaia DR2 radii present an average difference of 4% with a dispersion of 5%. Although the agreement is relatively good, the seismic radii are slightly underestimated compared to Gaia DR2 for our stars, the disagreement being greater for the more evolved ones. Our rotation analysis provides two candidates for potential rotation periods but longer observations are required to confirm them.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3