Search for lithium-rich giants in 32 open clusters with high-resolution spectroscopy

Author:

Tsantaki M.ORCID,Delgado-Mena E.,Bossini D.,Sousa S. G.,Pancino E.,Martins J. H. C.

Abstract

Context. Lithium-rich giant stars are rare and their existence poses a challenge to our understanding of stellar structure and evolution. In particular, open clusters aptly constrain the mass and age of their members, offering a unique opportunity to understand the evolutionary stage where Li enrichment occurs. Aims. We take advantage of the high-quality sample gathered for the search for planets in open clusters with HARPS and UVES to look for Li-rich giants and to identify the Li enrichment mechanisms responsible. Methods. We derived stellar parameters for 247 stars belonging to 32 open clusters, with 0.07 Ga < ages < 3.6 Ga. We employed the spectral synthesis technique code FASMA for the abundance analysis of 228 stars from our sample. We also determined the ages, distances, and extinction using astrometry and photometry from Gaia and PARSEC isochrones to constrain their evolutionary stage. Our sample covers a wide range of stellar masses from 1 to more than 6 M where the majority of the masses are above 2 M. Results. We find 14 canonical Li-rich giant stars that have experienced the first dredge-up. This corresponds to 6% of our total sample, higher than what is typically found for field stars. The majority of the stars (11/14) are located at the red clump, two lie on the red giant branch, and we could not conclude on its evolutionary stage for one. Apart from the canonical limit, we used the maximum Li abundance of the progenitor stars as a criterion for Li enrichment and found 12 Li enriched stars (five appearing in the red clump, five at the upper red giant branch, and two that are inconclusive). We find Li enhancement also among eight stars that have passed the first dredge-up and show strong Li lines based on the fact that stars at the same evolutionary stage in the same cluster have significantly different Li abundances. We confirm that giants with higher Li abundances correspond to a higher fraction of fast-rotating giants, suggesting a connection between Li enhancement and stellar rotation, as predicted by stellar models. Conclusions. Our Li-rich giants are found in various evolutionary stages, implying that no unique Li production mechanism is responsible for Li enrichment. Instead, there are different intrinsic or external mechanisms that are simultaneously at play.

Funder

FCT

MIUR Premiale 'Gaia-ESO survey'

MIUR Premiale 'MiTiC: Mining the Cosmos'

ASI-INAF

Fondazione Cassa di Risparmio di Firenze: Know the star, know the planet

Progetto Main Stream INAF: Chemo-dynamics of globular clusters: the Gaia revolution

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3