Yarkovsky effect detection from ground-based astrometric data for near-Earth asteroid (469219) Kamo’oalewa

Author:

Liu Lu,Yan Jianguo,Ye MaoORCID,Yu Liangliang,Chen Yihao,Qiu Denggao,Zheng Chong,Barriot Jean-Pierre

Abstract

Context. The Yarkovsky effect is a weak non-gravitational force but may significantly affect sub-kilometre-sized near-Earth asteroids. Yarkovsky-related drift may be detected, in principle, from astrometric or radar datasets of sufficient duration. To date, the asteroid Kamo’oalewa, the most stable of Earth’s quasi-satellites, has an ~18 yr-long arc of ground-based optical astrometry. These data provide an opportunity to detect the Yarkovsky effect acting on the asteroid Kamo’oalewa. Aims. We determined the Yarkovsky-related drift of asteroid Kamo’oalewa from ~18 yr of ground-based optical astrometry. Furthermore, we investigated the influence of the Yarkovsky effect on the orbital evolution of asteroid Kamo’oalewa based on this estimated value, and evaluated the potential improvements in the detection of non-gravitational accelerations (Yarkovsky effect and solar radiation pressure) for the asteroid Kamo’oalewa that could be provided by the future Chinese small-body exploration mission, Tianwen-2. Methods. The Yarkovsky-related drift of asteroid Kamo’oalewa was detected from the orbital fitting of the astrometry measurements. We checked the Yarkovsky effect detection based on both the orbit fitting results and the physical mechanisms of the Yarkovsky effect. Results. We report for the first time the detection of the Yarkovsky effect acting on asteroid Kamo’oalewa based on ~18 yr of ground-based optical astrometry data. The estimated semi-major axis drift is (−6.155 ± 1.758) × 10−3 au Myr−1. In addition, our numerical simulation shows that the Yarkovsky effect has almost no influence on the short-term orbital evolution of the asteroid Kamo’oalewa, but does have a long-term influence, by delaying the entry of the object into the Earth co-orbital region and accelerating its exit from this region, with a more significant signature on the exit than on the entry. In the context of spacecraft tracking data, the Tianwen-2 mission will improve both non-gravitational accelerations (Yarkovsky effect and solar radiation pressure) and predictions of its future ephemeris.

Funder

National Natural Science Foundation of China

Open project of State Key Laboratory of Lunar and Planetary Science, Macau University of Science and Technology

DAR grant in planetology from the French Space Agency

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference48 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3