Merger identification through photometric bands, colours, and their errors

Author:

Suelves L. E.ORCID,Pearson W. J.ORCID,Pollo A.ORCID

Abstract

Aims. We present the application of a fully connected neural network (NN) for galaxy merger identification using exclusively photometric information. Our purpose is not only to test the method’s efficiency, but also to understand what merger properties the NN can learn and what their physical interpretation is. Methods. We created a class-balanced training dataset of 5860 galaxies split into mergers and non-mergers. The galaxy observations came from SDSS DR6 and were visually identified in Galaxy Zoo. The 2930 mergers were selected from known SDSS mergers and the respective non-mergers were the closest match in both redshift and r magnitude. The NN architecture was built by testing a different number of layers with different sizes and variations of the dropout rate. We compared input spaces constructed using: the five SDSS filters: u, g, r, i, and z; combinations of bands, colours, and their errors; six magnitude types; and variations of input normalization. Results. We find that the fibre magnitude errors contribute the most to the training accuracy. Studying the parameters from which they are calculated, we show that the input space built from the sky error background in the five SDSS bands alone leads to 92.64 ± 0.15% training accuracy. We also find that the input normalization, that is to say, how the data are presented to the NN, has a significant effect on the training performance. Conclusions. We conclude that, from all the SDSS photometric information, the sky error background is the most sensitive to merging processes. This finding is supported by an analysis of its five-band feature space by means of data visualization. Moreover, studying the plane of the g and r sky error bands shows that a decision boundary line is enough to achieve an accuracy of 91.59%.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determining the time before or after a galaxy merger event;Astronomy & Astrophysics;2024-06-25

2. Detecting galaxy tidal features using self-supervised representation learning;Monthly Notices of the Royal Astronomical Society;2024-06-05

3. Do galaxy mergers prefer under-dense environments?;Astronomy & Astrophysics;2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3