Probing the innermost region of the AU Microscopii debris disc

Author:

Gallenne A.ORCID,Desgrange C.ORCID,Milli J.ORCID,Sanchez-Bermudez J.ORCID,Chauvin G.ORCID,Kraus S.,Girard J. H.ORCID,Boccaletti A.ORCID

Abstract

Context. AU Mic is a young and nearby M-dwarf star harbouring a circumstellar debris disc and one recently discovered planet on an eight-day orbit. Large-scale structures within the disc were also discovered and are moving outwards at high velocity. Aims. We aim to study this system with the highest spatial resolution in order to probe the innermost regions and to search for additional low-mass companions or set detection limits. Methods. The star was observed with two different high-angular resolution techniques probing complementary spatial scales. We obtained new Ks-band sparse aperture masking observations with VLT/SPHERE, which we combined with data from VLT/NACO, VLTI/PIONIER and VLTI/GRAVITY. Results. We did not detect additional close companions within the separation range 0.02–7 au from the parent star. We determined magnitude upper limits for companions of H ~ 9.8 mag within 0.02-0.5 au, Ks ~ 11.2 mag within 0.4–2.4 au, and L ~ 10.7 mag within 0.7–7 au. Using theoretical isochrones, we converted these magnitudes into upper limits on the mass of ~17 Mjup, ~12 Mjup, and ~9 Mjup, respectively. The PIONIER observations also allowed us to determine the angular diameter of AU Mic, θLD = 0.825 ± 0.033stat ± 0.038sys mas, which converts to a linear radius R = 0.862 ± 0.052 R when combined with the Gaia parallax. Conclusions. We did not detect the newly discovered planets orbiting AU Mic (M < 0.2 Mjup), but we derived upper limit masses for the innermost region of AU Mic. We do not have any detection with a significance beyond 3σ, the most significant signal with PIONIER being 2.9σ and that with SPHERE being 1.6σ. We applied the pyMESS2 code to estimate the detection probability of companions by combining radial velocities, multi-band SPHERE imaging, and our interferometric detection maps. We show that 99% of the companions down to ~0.5 Mjup can be detected within 0.02 au or 1 Mjup down to 0.2 au. The low-mass planets orbiting at ≲0.11 au (≲11 mas) from the star will not be directly detectable with the current adaptive optics (AO) and interferometric instruments because of its close orbit and very high contrast (~10−10 K). It will also be below the angular resolution and contrast limit of the next Extremely Large Telescope Infrared (ELT IR) imaging instruments.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3