KMT-2017-BLG-0673Lb and KMT-2019-BLG-0414Lb: Two microlensing planets detected in peripheral fields of KMTNet survey

Author:

Han Cheongho,Lee Chung-Uk,Gould Andrew,Jung Youn Kil,Albrow Michael D.,Chung Sun-Ju,Hwang Kyu-Ha,Kim Doeon,Ryu Yoon-Hyun,Shin In-Gu,Shvartzvald Yossi,Yang Hongjing,Yee Jennifer C.,Zang Weicheng,Cha Sang-Mok,Kim Dong-Jin,Kim Seung-Lee,Lee Dong-Joo,Lee Yongseok,Park Byeong-Gon,Pogge Richard W.

Abstract

Aims. We investigate the microlensing data collected during the 2017–2019 seasons in the peripheral Galactic bulge fields with the aim of finding planetary signals in microlensing light curves observed with relatively sparse coverage. Methods. We first sort out lensing events with weak short-term anomalies in the lensing light curves from the visual inspection of all non-prime-field events, and then test various interpretations of the anomalies. From this procedure, we find two previously unidentified candidate planetary lensing events KMT-2017-BLG-0673 and KMT-2019-BLG-0414. It is found that the planetary signal of KMT-2017-BLG-0673 was produced by the source crossing over a planet-induced caustic, but it was previously missed because of the sparse coverage of the signal. On the other hand, the possibly planetary signal of KMT-2019-BLG-0414 was generated without caustic crossing, and it was previously missed due to the weakness of the signal. We identify a unique planetary solution for KMT-2017-BLG-0673. However, for KMT-2019-BLG-0414, we identify two pairs of planetary solutions, for each of which there are two solutions caused by the close-wide degeneracy, and a slightly less favored binary-source solution, in which a single lens mass gravitationally magnified a rapidly orbiting binary source with a faint companion (xallarap). Results. From Bayesian analyses, it is estimated that the planet KMT-2017-BLG-0673Lb has a mass of 3.7−2.1+2.2 MJ, and it is orbiting a late K-type host star with a mass of 0.63−0.35+0.37 M. Under the planetary interpretation of KMT-2010-BLG-0414L, a star with a mass of 0.74−0.38+0.43 M hosts a planet with a mass of ~3.2–3.6 MJ depending on the solution. We discuss the possible resolution of the planet-xallarap degeneracy of KMT-2019-BLG-0414 by future adaptive-optics observations on 30 m class telescopes. The detections of the planets indicate the need for thorough investigations of non-prime-field lensing events for the complete census of microlensing planet samples.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3