Testing general relativity: New measurements of gravitational redshift in galaxy clusters

Author:

Rosselli D.ORCID,Marulli F.ORCID,Veropalumbo A.ORCID,Cimatti A.,Moscardini L.ORCID

Abstract

Context. The peculiar velocity distribution of cluster member galaxies provides a powerful tool to directly investigate the gravitational potentials within galaxy clusters and to test the gravity theory on megaparsec scales. Aims. We exploit spectroscopic galaxy and galaxy cluster samples extracted from the latest releases of the Sloan Digital Sky Survey (SDSS) to derive new constraints on the gravity theory. Methods. We considered a spectroscopic sample of 3058 galaxy clusters, with a maximum redshift of 0.5 and masses between 1014 − 1015 M. We analysed the velocity distribution of the cluster member galaxies to make new measurements of the gravitational redshift effect inside galaxy clusters. We accurately estimated the cluster centres, computing them as the average of angular positions and redshifts of the closest galaxies to the brightest cluster galaxies. We find that this centre definition provides a better estimation of the centre of the cluster gravitational potential wells, relative to simply assuming the brightest cluster galaxies as the cluster centres, as done in past literature works. We compared our measurements with the theoretical predictions of three different gravity theories: general relativity (GR), the f(R) model, and the Dvali–Gabadadze–Porrati (DGP) model. A new statistical procedure was used to fit the measured gravitational redshift signal, and thus to discriminate among the considered gravity theories. Finally, we investigated the systematic uncertainties that possibly affect the analysis. Results. We clearly detect the gravitational redshift effect in the exploited cluster member catalogue. We recover an integrated gravitational redshift signal of −11.4 ± 3.3 km s−1, which is in agreement, within the errors, with past literature works. Conclusions. Overall, our results are consistent with both GR and DGP predictions, while they are in marginal disagreement with the predictions of the considered f(R) strong field model.

Funder

ASI

PRIN-MIUR

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3