Internal rotation and buoyancy travel time of 60 γ Doradus stars from uninterrupted TESS light curves spanning 352 days

Author:

Garcia S.,Van Reeth T.ORCID,De Ridder J.ORCID,Aerts C.ORCID

Abstract

Context. Gamma Doradus (hereafter γ Dor) stars are gravity-mode pulsators whose periods carry information about their internal structure. These periods are especially sensitive to the internal rotation and chemical mixing, two processes that are currently not well constrained in the theory of stellar evolution. Aims. We aim to identify the pulsation modes and deduce the internal rotation and buoyancy travel time for 106 γ Dor stars observed by the Transiting Exoplanet Survey Satellite (TESS) mission in its southern continuous viewing zone (hereafter S-CVZ). We rely on 140 previously detected period-spacing patterns, that is, series of (near-)consecutive pulsation mode periods. Methods. We used the asymptotic expression to compute gravity-mode frequencies for ranges of the rotation rate and buoyancy travel time that cover the physical range in γ Dor stars. Those frequencies were fitted to the observed period-spacing patterns by minimising a custom cost function. The effects of rotation were evaluated using the traditional approximation of rotation, using the stellar pulsation code GYRE. Results. We obtained the pulsation mode identification, internal rotation, and buoyancy travel time for 60 TESS γ Dor stars. For the remaining 46 targets, the detected patterns were either too short or contained too many missing modes for unambiguous mode identification, and longer light curves are required. For the successfully analysed stars, we found that period-spacing patterns from 1-yr-long TESS light curves can constrain the internal rotation and buoyancy travel time to a precision of 0.03 d-1 and 400 s, respectively, which is about half as precise as literature results based on 4-yr-long Kepler light curves of γ Dor stars.

Funder

KU Leuven Research Council

BELgian federal Science Policy Office

Research Foundation Flanders

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3