Automatic segmentation of the fine structures of sunspots in high-resolution solar images

Author:

Gong Xiaoying,Zhong Libo,Rao Changhui

Abstract

Context. With the development of large-aperture ground-based solar telescopes and the adaptive optics system, the resolution of the obtained solar images has become increasingly higher. In the high-resolution photospheric images, the fine structures (umbra, penumbra, and light bridge) of sunspots can be observed clearly. The research of the fine structures of sunspots can help us to understand the evolution of solar magnetic fields and to predict eruption phenomena that have significant impacts on the Earth, such as solar flares. Therefore, algorithms for automatically segmenting the fine structures of sunspots in high-resolution solar image will greatly facilitate the study of solar physics. Aims. This study is aimed at proposing an automatic fine-structure segmentation method for sunspots that is accurate and requires little time. Methods. We used the superpixel segmentation to preprocess a solar image. Next, the intensity information, texture information, and spatial location information were used as features. Based on these features, the Gaussian mixture model was used to cluster different superpixels. According to different intensity levels of the umbra, penumbra, and quiet photosphere, the clusters were classified into umbra, penumbra, and quiet-photosphere areas. Finally, the morphological method was used to extract the light-bridge area. Results. The experimental results show that the method we propose can segment the fine structures of sunspots quickly and accurately. In addition, the method can process high-resolution solar images from different solar telescopes and generates a satisfactory segmentation performance.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3