Euclid preparation

Author:

,Castro T.,Fumagalli A.,Angulo R. E.,Bocquet S.,Borgani S.,Carbone C.,Dakin J.,Dolag K.,Giocoli C.,Monaco P.,Ragagnin A.,Saro A.,Sefusatti E.,Costanzi M.,Le Brun A. M. C.,Corasaniti P.-S.,Amara A.,Amendola L.,Baldi M.,Bender R.,Bodendorf C.,Branchini E.,Brescia M.,Camera S.,Capobianco V.,Carretero J.,Castellano M.,Cavuoti S.,Cimatti A.,Cledassou R.,Congedo G.,Conversi L.,Copin Y.,Corcione L.,Courbin F.,Da Silva A.,Degaudenzi H.,Douspis M.,Dubath F.,Duncan C. A. J.,Dupac X.,Farrens S.,Ferriol S.,Fosalba P.,Frailis M.,Franceschi E.,Galeotta S.,Garilli B.,Gillis B.,Grazian A.,Grupp F.,Haugan S. V. H.,Hormuth F.,Hornstrup A.,Hudelot P.,Jahnke K.,Kermiche S.,Kitching T.,Kunz M.,Kurki-Suonio H.,Lilje P. B.,Lloro I.,Mansutti O.,Marggraf O.,Marulli F.,Meneghetti M.,Merlin E.,Meylan G.,Moresco M.,Moscardini L.,Munari E.,Niemi S. M.,Padilla C.,Paltani S.,Pasian F.,Pedersen K.,Pettorino V.,Pires S.,Polenta G.,Poncet M.,Popa L.,Pozzetti L.,Raison F.,Rebolo R.,Renzi A.,Rhodes J.,Riccio G.,Romelli E.,Saglia R.,Sapone D.,Sartoris B.,Schneider P.,Seidel G.,Sirri G.,Stanco L.,Tallada Crespí P.,Taylor A. N.,Toledo-Moreo R.,Torradeflot F.,Tutusaus I.,Valentijn E. A.,Valenziano L.,Vassallo T.,Wang Y.,Weller J.,Zacchei A.,Zamorani G.,Andreon S.,Bardelli S.,Bozzo E.,Colodro-Conde C.,Di Ferdinando D.,Farina M.,Graciá-Carpio J.,Lindholm V.,Neissner C.,Scottez V.,Tenti M.,Zucca E.,Baccigalupi C.,Balaguera-Antolínez A.,Ballardini M.,Bernardeau F.,Biviano A.,Blanchard A.,Borlaff A. S.,Burigana C.,Cabanac R.,Cappi A.,Carvalho C. S.,Casas S.,Castignani G.,Cooray A.,Coupon J.,Courtois H. M.,Davini S.,De Lucia G.,Desprez G.,Dole H.,Escartin J. A.,Escoffier S.,Finelli F.,Ganga K.,Garcia-Bellido J.,George K.,Gozaliasl G.,Hildebrandt H.,Hook I.,Ilić S.,Kansal V.,Keihanen E.,Kirkpatrick C. C.,Loureiro A.,Macias-Perez J.,Magliocchetti M.,Maoli R.,Marcin S.,Martinelli M.,Martinet N.,Matthew S.,Maturi M.,Metcalf R. B.,Morgante G.,Nadathur S.,Nucita A. A.,Patrizii L.,Peel A.,Popa V.,Porciani C.,Potter D.,Pourtsidou A.,Pöntinen M.,Sánchez A. G.,Sakr Z.,Schirmer M.,Sereno M.,Spurio Mancini A.,Teyssier R.,Valiviita J.,Veropalumbo A.,Viel M.

Abstract

Euclid’s photometric galaxy cluster survey has the potential to be a very competitive cosmological probe. The main cosmological probe with observations of clusters is their number count, within which the halo mass function (HMF) is a key theoretical quantity. We present a new calibration of the analytic HMF, at the level of accuracy and precision required for the uncertainty in this quantity to be subdominant with respect to other sources of uncertainty in recovering cosmological parameters from Euclid cluster counts. Our model is calibrated against a suite of N-body simulations using a Bayesian approach taking into account systematic errors arising from numerical effects in the simulation. First, we test the convergence of HMF predictions from different N-body codes, by using initial conditions generated with different orders of Lagrangian Perturbation theory, and adopting different simulation box sizes and mass resolution. Then, we quantify the effect of using different halo finder algorithms, and how the resulting differences propagate to the cosmological constraints. In order to trace the violation of universality in the HMF, we also analyse simulations based on initial conditions characterised by scale-free power spectra with different spectral indexes, assuming both Einstein–de Sitter and standard ΛCDM expansion histories. Based on these results, we construct a fitting function for the HMF that we demonstrate to be sub-percent accurate in reproducing results from 9 different variants of the ΛCDM model including massive neutrinos cosmologies. The calibration systematic uncertainty is largely sub-dominant with respect to the expected precision of future mass–observation relations; with the only notable exception of the effect due to the halo finder, that could lead to biased cosmological inference.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning insights into non-universality in the halo mass function;Monthly Notices of the Royal Astronomical Society;2024-07-10

2. Euclid preparation;Astronomy & Astrophysics;2024-05

3. The Three Hundred: Msub–Vcirc relation;Monthly Notices of the Royal Astronomical Society;2024-01-31

4. Euclid preparation;Astronomy & Astrophysics;2024-01

5. Star formation and chemical enrichment in protoclusters;Monthly Notices of the Royal Astronomical Society;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3