ESPRESSO observations of HE 0107−5240 and other CEMP-no stars with [Fe/H] ≤ –4.5

Author:

Aguado D. S.ORCID,Molaro P.,Caffau E.,González Hernández J. I.,Zapatero Osorio M. R.,Bonifacio P.,Allende Prieto C.,Rebolo R.,Damasso M.,Suárez Mascareño A.,Howell S. B.,Furlan E.,Cristiani S.,Cupani G.,Di Marcantonio P.,D’Odorico V.,Lovis C.,Martins C. J. A. P.,Milakovi D.,Murphy M. T.,Nunes N. J.,Pepe F.,Santos N. C.,Schmidt T. M.,Sozzetti A.

Abstract

Context. HE 0107−5240 is a hyper metal-poor star with [Fe/H] = −5.39, one of the lowest-metallicity stars known. Its stellar atmosphere is enhanced in carbon, with [C/Fe] = +4.0, without a detectable presence of neutron-capture elements. Therefore, it belongs to the carbon-enhanced metal-poor (CEMP−no) group, along with the majority of the most metal-poor stars known to date. Recent studies have revealed variations in the line-of-sight velocity of HE 0107−5240, suggesting it belongs to a binary system. CEMP-no stars are the closest descendants of the very first Pop III stars, and binarity holds important clues for the poorly known mechanism that leads to their formation. Aims. We performed high-resolution observations with the ESPRESSO spectrograph at the VLT to constrain the kinematical properties of the binary system HE 0107−5240 and to probe the binarity of the sample of the eight most metal-poor stars with [Fe/H] ≤ −4.5. Methods. Radial velocities are obtained by using a cross-correlation function in the interval 4200−4315 Å , which contains the relatively strong CH band, against a template that could be either a synthetic spectrum or a combined observed spectrum in an iterative process. A Bayesian method is applied to calculate the orbit using the ESPRESSO measurements and others from the literature. Chemical analysis has also been performed for HE 0107−5240, employing spectral synthesis with the SYNTHE and ATLAS codes. Results. Observations of HE 0107−5240 spanning more than 3 years show a monotonic decreasing trend in radial velocity at a rate of approximately 0.5 m s−1 d−1. A maximum vrad was reached between March 13, 2012, and December 8, 2014. The period is constrained at Porb = 13009−1370+1496 d. New, more stringent upper limits have been found for several elements: (a) [Sr/Fe] and [Ba/Fe] are lower than −0.76 and +0.2, respectively, confirming the star is a CEMP-no; (b) A(Li) < 0.5 is well below the plateau at A(Li) = 1.1 found in the lower red giant branch stars, suggesting Li was originally depleted; and (c) the isotopic ratio 12C/13C is 87 ± 6, showing very low 13C in contrast to what is expected from a ‘spinstar’ progenitor. Conclusions. We confirm that HE 0107−5240 is a binary star with a long period of about 13 000 d (∼36 yr). The carbon isotopic ratio excludes the possibility that the companion has gone through the asymptotic giant branch phase and transferred mass to the currently observed star. The binarity of HE 0107−5240 implies that some of the first generations of low-mass stars formed in multiple systems and indicates that the low metallicity does not preclude the formation of binaries. Finally, a solid indication of vrad variation has also been found in SMSS 1605−1443.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The 12C/13C isotopic ratio at the dawn of chemical evolution;Astronomy & Astrophysics;2023-11

2. GTC Follow-up Observations of Very Metal-poor Star Candidates from DESI;The Astrophysical Journal;2023-11-01

3. The energy distribution of the first supernovae;Monthly Notices of the Royal Astronomical Society;2023-07-28

4. Evidence of First Stars-enriched Gas in High-redshift Absorbers*;The Astrophysical Journal;2023-05-01

5. The Pristine survey – XXI. Exploring the metal-poor boundary with ESPaDoNS;Monthly Notices of the Royal Astronomical Society;2023-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3