Sublimation origin of active asteroid P/2018 P3

Author:

Kim YoonyoungORCID,Agarwal Jessica,Jewitt David,Mutchler Max,Larson Stephen,Weaver Harold,Mommert Michael

Abstract

Context. Active asteroids show (typically transient) cometary activity, driven by a range of processes. A sub-set, sometimes called main-belt comets, may be driven by sublimation and so could be useful for tracing the present-day distribution of asteroid ice. Object P/2018 P3 has a Tisserand parameter 3.096 but a high eccentricity 0.415, placing it within the dynamical boundary between asteroids and comets. Aims. We aim to determine the cause of activity (sublimation or something else) and assess the dynamical stability of P3, in order to better constrain the intrinsic ice content in the main belt. Methods. We obtained Hubble Space Telescope images of P3 at the highest angular resolution. We compared the observations with a Monte Carlo model of dust dynamics. We identified and analyzed archival CFHT (2013) and NEOWISE (2018) data. In addition, we numerically integrated the orbits of P3 clones for 100 Myr. Results. Object P3 has been recurrently active near two successive perihelia (at 1.76 AU), indicative of a sublimation origin. The absence of 4.6 µm band excess indicates zero or negligible CO or CO2 gas production from P3. The properties of the ejected dust are remarkably consistent with those found in other main-belt comets (continuous emission of ~0.05–5 mm particles at 0.3–3 m s−1 speeds), with mass-loss rates of ≳2 kg s−1. The orbit of P3 is unstable on timescales ~ 10 Myr. Conclusions. We speculate that P3 has recently arrived from a more stable source (either the Kuiper Belt or elsewhere in the main belt) and has been physically aged at its current location, finally becoming indistinguishable from a weakly sublimating asteroid in terms of its dust properties. Whatever the source of P3, given the dynamical instability of its current orbit, P3 should not be used to trace the native distribution of asteroid ice.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research of the family associations of active asteroids in the main belt;Monthly Notices of the Royal Astronomical Society;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3