Structure and evolution of a tidally heated star

Author:

Estrella-Trujillo D.,Arthur S. J.ORCID,Koenigsberger G.ORCID,Moreno E.

Abstract

Context. The shearing motion of tidal flows that are excited in non-equilibrium binary stars transform kinetic energy into heat via a process referred to as tidal heating. Aims. We aim to explore the way tidal heating affects the stellar structure. Methods. We used the TIDES code, which solves the equations of motion of the three-dimensional (3D) grid of volume elements that conform multiple layers of a rotating binary star to obtain an instantaneous value for the angular velocity, ω″, as a function of position in the presence of gravitational, centrifugal, Coriolis, gas pressure, and viscous forces. The released energy, Ė, was computed using a prescription for turbulent viscosity that depends on the instantaneous velocity gradients. The Ė values for each radius were injected into a MESA stellar structure calculation. The method is illustrated for a 1.0 + 0.8 M binary system, with an orbital period of P = 1.44 d and departures from synchronous rotation of 5% and 10%. Results. Heated models have a larger radius and surface luminosity, a smaller surface convection zone, and lower nuclear reaction rates than the equivalent standard stellar models, and their evolutionary tracks extend to higher temperatures. The magnitude of these effects depends on the amount of injected energy, which, for a fixed set of stellar, rotation and orbital parameters, depends on the perturbed star’s density structure and turbulent viscosity. Conclusions. Tidal heating offers a possible alternative for describing phenomena such as bloated or overluminous binary components, age discrepancies, and aspherical mass ejection, as well as the extended main sequence turnoff in clusters. However, establishing its actual role requires 3D stellar structure models commensurate with the nonspherically symmetric properties of tidal perturbations.

Funder

UNAM DGAPA/PAPIIT

CONACYT

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3