Searching for dark energy with the Sun

Author:

Saltas Ippocratis D.,Christensen-Dalsgaard Jørgen

Abstract

General extensions of general relativity (GR) based on bona fide degrees of freedom predict a fifth force which operates within massive objects, opening up an exciting opportunity to perform precision tests of gravity at stellar scales. Here, focussing on general scalar-tensor theories for dark energy, we utilise the Sun as our laboratory and search for imprints of the fifth-force effect on the solar equilibrium structure. With analytic results and numerical simulations, we explain how the different solar regions offer powerful ways to test gravity. Accounting for the delicate interplay between the fifth force and solar microphysics such as opacity, diffusion, equation of state, and metallicity, we demonstrate that the fifth force still leaves a sharp signature on the solar sound speed, in a region where simple estimates of input physics uncertainties become negligible. For general scalar-field extensions of GR, known as (U-)DHOST, based solely on the observational helioseismic errors, our analysis at the equilibrium level allows us to place an approximate constraint on the fifth-force coupling strength of −10−3 ≲ 𝒴 ≲ 5 × 10−4 at 2σ. This result improves previous stellar constraints by ∼3 orders of magnitude, and should be confirmed and improved by future helioseismic inversions in modified gravity, combined with an elaborate accounting of theoretical uncertainties. Our analysis can be applied to a wide set of theories beyond GR, and also paves the way for helioseismic analyses in this context. In this regard, we discuss how the solar radiative and convective zone can be employed as promising laboratories to test generic theories of gravity.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equilibrium of slowly rotating polytropes in modified Einstein gravity;Physical Review D;2024-05-17

2. Gravitational redshift constraints on the effective theory of interacting dark energy;Journal of Cosmology and Astroparticle Physics;2024-05-01

3. Signatures of solar chameleons in the Earth’s magnetic field;Physical Review D;2024-03-27

4. Dark matter induced stellar oscillations;Monthly Notices of the Royal Astronomical Society: Letters;2023-09-22

5. Planetary seismology as a test of modified gravity proposals;Physical Review D;2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3