The GRAVITY young stellar object survey

Author:

,Wojtczak J. A.,Labadie L.,Perraut K.,Tessore B.,Soulain A.,Ganci V.,Bouvier J.,Dougados C.,Alécian E.,Nowacki H.,Cozzo G.,Brandner W.,Caratti o Garatti A.,Garcia P.,Garcia Lopez R.,Sanchez-Bermudez J.,Amorim A.,Benisty M.,Berger J.-P.,Bourdarot G.,Caselli P.,Clénet Y.,de Zeeuw P. T.,Davies R.,Drescher A.,Duvert G.,Eckart A.,Eisenhauer F.,Eupen F.,Förster-Schreiber N. M.,Gendron E.,Gillessen S.,Grant S.,Grellmann R.,Heißel G.,Henning Th.,Hippler S.,Horrobin M.,Hubert Z.,Jocou L.,Kervella P.,Lacour S.,Lapeyrère V.,Le Bouquin J.-B.,Léna P.,Lutz D.,Mang F.,Ott T.,Paumard T.,Perrin G.,Scheithauer S.,Shangguan J.,Shimizu T.,Spezzano S.,Straub O.,Straubmeier C.,Sturm E.,van Dishoeck E.,Vincent F.,Widmann F.

Abstract

Context. Hot atomic hydrogen emission lines in pre-main sequence stars serve as tracers for physical processes in the innermost regions of circumstellar accretion disks, where the interaction between a star and disk is the dominant influence on the formation of infalls and outflows. In the highly magnetically active T Tauri stars, this interaction region is particularly shaped by the stellar magnetic field and the associated magnetosphere, covering the inner five stellar radii around the central star. Even for the closest T Tauri stars, a region as compact as this is only observed on the sky plane at sub-mas scales. To resolve it spatially, the capabilities of optical long baseline interferometry are required. Aims. We aim to spatially and spectrally resolve the Brγ hydrogen emission line with the methods of interferometry in order to examine the kinematics of the hydrogen gas emission region in the inner accretion disk of a sample of solar-like young stellar objects. The goal is to identify trends and categories among the sources of our sample and to discuss whether or not they can be tied to different origin mechanisms associated with Brγ emission in T Tauri stars, chiefly and most prominently magnetospheric accretion. Methods. We observed a sample of seven T Tauri stars for the first time with VLTI GRAVITY, recording spectra and spectrally dispersed interferometric quantities across the Brγ line at 2.16 µm in the near-infrared K-band. We used the visibilities and differential phases to extract the size of the Brγ emission region and the photocentre shifts on a channel-by-channel basis, probing the variation of spatial extent at different radial velocities. To assist in the interpretation, we also made use of radiative transfer models of magnetospheric accretion to establish a baseline of expected interferometric signatures if accretion is the primary driver of Brγ emission. Results. From among our sample, we find that five of the seven T Tauri stars show an emission region with a half-flux radius in the four to seven stellar radii range that is broadly expected for magnetospheric truncation. Two of the five objects also show Brγ emission primarily originating from within the co-rotation radius, which is an important criterion for magnetospheric accretion. Two objects exhibit extended emission on a scale beyond 10 R*, one of them is even beyond the K-band continuum half-flux radius of 11.3 R*. The observed photocentre shifts across the line can be either similar to what is expected for disks in rotation or show patterns of higher complexity. Conclusions. Based on the observational findings and the comparison with the radiative transfer models, we find strong evidence to suggest that for the two weakest accretors in the sample, magnetospheric accretion is the primary driver of Brγ radiation. The results for the remaining sources imply either partial or strong contributions coming from additional, spatially extended emission components in the form of outflows, such as stellar or disk winds. We expect that in actively accreting T Tauri stars, these phenomena typically occur simultaneously on different spatial scales. Through more advanced modelling, interferometry will be a key factor in disentangling their distinct contributions to the total Brγ flux arising from the innermost disk regions.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3