Ion irradiation triggers the formation of the precursors of complex organics in space

Author:

Urso R. G.ORCID,Hénault E.,Brunetto R.,Baklouti D.,Baratta G. A.,Djouadi Z.,Elsaesser A.,Scirè C.,Strazzulla G.,Palumbo M. E.

Abstract

Context. Cosmic rays and solar energetic particles induce changes in the composition of compounds frozen onto dust grains in the interstellar medium (ISM), in comets, and on the surfaces of atmosphere-less small bodies in the outer Solar System. This induces the destruction of pristine compounds and triggers the formation of various species, including the precursors of complex organics. Aims. We investigate the role of energetic ions in the formation of formaldehyde (H2CO) and acetaldehyde (CH3CHO), which are observed in the ISM and in comets, and which are thought to be the precursors of more complex compounds such as hexamethylenete-tramine (HMT), which is found in carbonaceous chondrites and in laboratory samples produced after the irradiation and warm-up of astrophysical ices. Methods. We performed ion irradiation of water, methanol, and ammonia mixtures at 14–18 K. We bombarded frozen films with 40–200 keV H+ that simulate solar energetic particles and low-energy cosmic rays. Samples were analysed by infrared transmission spectroscopy. Results. Among other molecules, we observe the formation of H2CO and CH3CHO, and we find that their abundance depends on the dose and on the stoichiometry of the mixtures. We find that the H2CO abundance reaches the highest value after a dose of 10 eV/16u and then it decreases as the dose increases. Conclusions. The data suggest that surfaces exposed to high doses are depleted in H2CO. This explains why the amount of HMT in organic residues and that formed after irradiation of ices depends on the dose deposited in the ice. Because the H2CO abundance decreases at doses higher than 10 eV/16u, a lower quantity of H2CO is available to form HMT during the subsequent warm-up. The H2CO abundances caused by ion bombardment are insufficient to explain the ISM abundances, but ion bombardment can account for the abundance of CH3CHO towards the ISM and comets.

Funder

Einstein Stiftung Berlin

French Programme National de Planétologie, Faculté des Sciences d'Orsay, Université Paris-Sud (Attractivité 2012), P2IO LabEx

Italian Ministero dell'Istruzione, Università e Ricerca, Proteggi Premiali

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3