The ultraluminous X-ray source M 81 X-6: a weakly magnetised neutron star with a precessing accretion disc?

Author:

Amato R.ORCID,Gúrpide A.ORCID,Webb N. A.,Godet O.,Middleton M. J.

Abstract

Context. Thanks to their proximity, ultraluminous X-ray sources (ULXs) represent a privileged astrophysical laboratory to study super-Eddington accretion. Current open questions concern the nature of the compact object, which is still hard to determine in those cases where pulsations are not directly detected, and the mechanisms responsible for the spectral changes observed in many ULXs. Aims. We investigate the nature of the ULX M 81 X-6, which has been suggested to harbour a neutron star (NS), by studying its long-term X-ray spectral and temporal evolution, with the goal of assessing the astrophysical phenomena responsible for its spectral changes. Methods. Using the rich set of available archival data from XMM-Newton, Chandra, NuSTAR, and Swift/XRT, we tracked the evolution of the source on the hardness-intensity diagram and inferred the different emitting regions of the system and their geometry, as well as the mechanisms responsible for the spectral transitions. Results. We find that the source oscillates between two main states: one characterised by a hard and luminous spectrum and the other at low hardness and luminosity. The properties of the soft component remain constant between the two states, suggesting that changes in the mass-transfer rate are not driving the spectral transitions. Instead, the bi-modal behaviour of the source and the known super-orbital period would point to the precession of the accretion disc. Here, we tested two theoretical models: (1) Lense-Thirring precession, which can explain the super-orbital period if the NS has a magnetic field B ≲ 1010 G, supporting the idea of M 81 X-6 as a weakly magnetised NS, and (2) precession due to the torque of the NS magnetic field, which leads to B ≳ 1011 G. However, the latter scenario, assuming M 81 X-6 shares similar properties with other NS-ULXs, is disfavoured because it would require magnetic field strengths (B > 1015 G) much higher than those known for other pulsating ULXs. We further show that the contribution from the hard component attributed to the putative accretion column sits just below the typical values found in pulsating ULXs, which, together with the low value of the pulsed fraction (≤10%) found for one XMM-Newton/pn observation, could explain the source’s lack of pulsations. Conclusions. The spectral properties and variability of M 81 X-6 can be accounted for if the accretor is a NS with a low magnetic field. Under the hypothesis of Lense-Thirring precession, we predict a spin period of the NS of a few seconds. We encourage future X-ray pointed observations to look for pulsations and/or spectral signatures of the magnetic field.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference91 articles.

1. Arnaud K. A. 1996, in Astronomical Data Analysis Software and Systems V, eds. Jacoby G. H., & Barnes J., ASP Conf. Ser., 101, 17

2. Bachetti M. 2018, Astrophysics Source Code Library [record ascl:1805.019]

3. An ultraluminous X-ray source powered by an accreting neutron star

4. Bachetti M., Huppenkothen D., Khan U., et al. 2022, https://doi.org/10.5281/zenodo.6394742

5. Evolution of the Spin, Spectrum and Superorbital Period of the Ultraluminous X-Ray Pulsar M51 ULX7

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasi-isotropic UV emission in the ULX NGC 1313 X–1;Monthly Notices of the Royal Astronomical Society;2024-06-08

2. Absence of nebular He ii λ4686 constrains the UV emission from the ultraluminous X-ray pulsar NGC 1313 X-2;Monthly Notices of the Royal Astronomical Society;2024-05-24

3. The high energy X-ray probe (HEX-P): studying extreme accretion with ultraluminous X-ray sources;Frontiers in Astronomy and Space Sciences;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3