Oxygen line in fireball spectra and its application to satellite observations

Author:

Vojáček V.ORCID,Borovička J.ORCID,Spurný P.ORCID

Abstract

Aims. Lightning mapper sensors on board weather satellites can be successfully used to observe fireballs. These sensors use a very narrow spectral band at 777 nm, which is only a small fraction of the total fireball radiation. In this spectral band, the oxygen O I-1 triplet is dominant for fast meteors and the Planck continuum can prevail in slow meteors. It is possible to estimate the meteor brightness in the visible spectral range from this narrowband radiation, but it is vital to first study the dependence of this radiation on the meteor velocity. Methods. We used observations from the well-established European Fireball Network with newly developed digital spectral cameras that allowed us to study the oxygen triplet in meteor spectra and its relation to the meteor velocity and altitude. In addition, we studied strong magnesium and sodium lines. Results. We developed a method for calibration of fireball observation reported by Geostationary Lightning Mapper (GLM) sensors on board the Geostationary Operational Environmental Satellite (GOES) weather satellites. We confirm that in slow meteors, the radiation of the Planck continuum dominates, but for faster meteors, a correction on velocity is needed. We observe that the altitude where the oxygen line was recorded can also affect the radiation at 777 nm. In addition, determining whether or not the meteor showed a bright flare could also lead to a similar effect. Thus, the meteor brightness estimate may be impacted by these characteristics. We derived simple corrections on the altitude and on the meteor brightness that helped to improve the overall precision of the magnitude estimate of our sample. This allowed us to estimate the magnitude of meteors observed by GLM with an accuracy of ≈1 in magnitude. The Na/Mg line intensity ratio was found to be constant for velocities above 25 km s−1 and increasing toward lower velocities.

Funder

Grant Agency of the Czech Republic

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3