Spectral cube extraction for the VLT/SPHERE IFS

Author:

Samland M.ORCID,Brandt T. D.ORCID,Milli J.ORCID,Delorme P.ORCID,Vigan A.ORCID

Abstract

We present a new open-source data-reduction pipeline to reconstruct spectral data cubes from raw SPHERE integral-field spectrograph (IFS) data. The pipeline is written in Python and based on the pipeline that was developed for the CHARIS IFS. It introduces several improvements to SPHERE data analysis that ultimately produce significant improvements in postprocessing sensitivity. We first used new data to measure SPHERE lenslet point spread functions (PSFs) at the four laser calibration wavelengths. These lenslet PSFs enabled us to forward-model SPHERE data, to extract spectra using a least-squares fit, and to remove spectral crosstalk using the measured lenslet PSFs. Our approach also reduces the number of required interpolations, both spectral and spatial, and can preserve the original hexagonal lenslet geometry in the SPHERE IFS. In the case of least-squares extraction, no interpolation of the data is performed. We demonstrate this new pipeline on the directly imaged exoplanet 51 Eri b and on observations of the hot white dwarf companion to HD 2133. The extracted spectrum of HD 2133B matches theoretical models, demonstrating spectrophotometric calibration that is good to a few percent. Postprocessing on two 51 Eri b data sets demonstrates a median improvement in sensitivity of 80 and 30% for the 2015 and 2017 data, respectively, compared to the use of cubes reconstructed by the SPHERE Data Center. The largest improvements are seen for poorer observing conditions. The new SPHERE pipeline takes less than three minutes to produce a data cube on a modern laptop, making it practical to reprocess all SPHERE IFS data.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3