Muons in the aftermath of neutron star mergers and their impact on trapped neutrinos

Author:

Loffredo EleonoraORCID,Perego AlbinoORCID,Logoteta DomenicoORCID,Branchesi MaricaORCID

Abstract

Context. In the upcoming years, present and next-generation gravitational wave observatories will detect a larger number of binary neutron star (BNS) mergers with increasing accuracy. In this context, improving BNS merger numerical simulations is crucial to correctly interpret the data and constrain the equation of state (EOS) of neutron stars (NSs). Aims. State-of-the-art simulations of BNS mergers do not include muons. However, muons are known to be relevant in the microphysics of cold NSs and are expected to have a significant role in mergers, where the typical thermodynamic conditions favour their production. Our work is aimed at investigating the impact of muons on the merger remnant. Methods. We post-process the outcome of four numerical relativity simulations of BNS mergers performed with three different baryonic EOSs and two mass ratios considering the first 15 milliseconds after merger. We compute the abundance of muons in the remnant and analyse how muons affect the trapped neutrino component and the fluid pressure. Results. We find that depending on the baryonic EOS, the net fraction of muons is between 30% and 70% the net fraction of electrons. Muons change the flavour hierarchy of trapped (anti-)neutrinos such that deep inside the remnant, muon anti-neutrinos are the most abundant, followed by electron anti-neutrinos. Finally, muons and trapped neutrinos modify the neutron-to-proton ratio, affecting the remnant pressure by up to 7% when compared with calculations neglecting them. Conclusions. This work demonstrates that muons have a non-negligible effect on the outcome of BNS merger simulations, and they should be included to improve the accuracy of a simulation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Holographic neutrino transport in dense strongly-coupled matter;Journal of High Energy Physics;2023-11-21

2. Impact of pions on binary neutron star mergers;Physical Review D;2023-07-26

3. Properties of Hot Nuclear Matter;Universe;2023-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3