Study of the effect of turbulent interstellar medium on the morphology of young supernova remnants

Author:

Rigon GabrielORCID,Inoue TsuyoshiORCID

Abstract

Context. Supernova remnants (SNRs) are one of the main sources of galactic cosmic-ray acceleration. This acceleration, believed to happen at the blast wave front, leads to energy loss at the shock front. This results in the apparent proximity between the blast wave and the contact discontinuity. Aims. In this article, we study the effect that turbulent-like density perturbations of the interstellar medium (ISM) have on the evolution of young SNRs. We focus on the impact these fluctuations have on the structure of SNRs and more precisely on the resulting distance between blast wave and contact discontinuity. As cosmic-ray acceleration is necessary to explain this distance, this study indirectly puts into question the cosmic-ray acceleration at the blast wave front. Methods. We performed a set of purely hydrodynamic three-dimensional simulations without cosmic-ray acceleration in a co-expanding frame. We randomly initialised the density variation of the ISM following a Kolmogorov power law. The resulting ratios of radii between blast wave, contact discontinuity, and reverse shock are then compared to astronomical observations. Results. The addition of density perturbation does not significantly change the average ratio of radii. However, the simulations show a higher growth of interfacial instabilities in the presence of a turbulent ISM. The resulting deformation of the contact discontinuity could explain the proximity between contact discontinuity and blast wave. The deformations also explain the plateau in the radial distribution of the line-of-sight velocity associated with the observations of Tycho. Conclusions. Density perturbations of the ISM should not be neglected in the simulation of young SNRs as they have an impact on the structure of these latter objects that is comparable to that of cosmic-ray acceleration.

Funder

Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan

Japan Society for the Promotion of Science

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3