Polarisation of molecular lines in the circumstellar envelope of the post-asymptotic giant branch star OH 17.7–2.0

Author:

Vlemmings W. H. T.ORCID,Tafoya D.ORCID

Abstract

Context. The role of magnetic field in shaping planetary nebulae (PNe), either directly or indirectly after being enhanced by binary interaction, has long been a topic of debate. Large-scale magnetic fields around pre-PNe have been inferred from polarisation observations of masers. However, because masers probe very specific regions, it is still unclear if the maser results are representative of the intrinsic magnetic field in the circumstellar envelope (CSE). Aims. Molecular line polarisation of non-maser lines can provide important information about the magnetic field. A comparison between the magnetic field morphology determined from maser observations and that observed in the more diffuse CO gas can reveal if the two tracers probe the same magnetic field. Methods. We compared observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) of molecular line polarisation around the post-asymptotic giant branch (post-AGB) or pre-PN star OH 17.7−2.0 with previous observations of polarisation in the 1612 MHz OH maser region. Earlier mid-infrared observations indicate that OH 17.7−2.0 is a young bipolar pre-PN, with both a torus and bipolar outflow cavities embedded in a remnant AGB envelope. Results. We detect CO J = 2 − 1 molecular line polarisation at a level of ∼4% that displays an ordered linear polarisation structure. We find that, correcting for Faraday rotation of the OH maser linear polarisation vectors, the OH and CO linearly polarised emission trace the same large-scale magnetic field. A structure function analysis of the CO linear polarisation reveals a plane-of-the-sky magnetic field strength of B ∼ 1 mG in the CO region, consistent with previous OH Zeeman observations. Conclusions. The consistency of the ALMA CO molecular line polarisation observation with maser observations indicate that both can be used to determine the magnetic field strength and morphology in CSEs. The new observations indicate that the magnetic field has a strong toroidal field component projected on the torus structure and a poloidal field component along the outflow cavity. The existence of a strong, ordered, magnetic-field around OH 17.7−2.0 indicates that the magnetic field is likely involved in the formation of this bipolar pre-PN.

Funder

Swedish Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3