Euclid preparation

Author:

,Humphrey A.,Bisigello L.,Cunha P. A. C.,Bolzonella M.,Fotopoulou S.,Caputi K.,Tortora C.,Zamorani G.,Papaderos P.ORCID,Vergani D.,Brinchmann J.,Moresco M.ORCID,Amara A.,Auricchio N.,Baldi M.,Bender R.,Bonino D.,Branchini E.,Brescia M.,Camera S.,Capobianco V.,Carbone C.,Carretero J.ORCID,Castander F. J.ORCID,Castellano M.,Cavuoti S.,Cimatti A.,Cledassou R.,Congedo G.,Conselice C. J.,Conversi L.,Copin Y.,Corcione L.,Courbin F.,Cropper M.ORCID,Da Silva A.,Degaudenzi H.,Douspis M.,Dubath F.,Duncan C. A. J.,Dupac X.,Dusini S.,Farrens S.,Ferriol S.,Frailis M.,Franceschi E.,Fumana M.,Gómez-Alvarez P.,Galeotta S.,Garilli B.ORCID,Gillard W.,Gillis B.,Giocoli C.,Grazian A.,Grupp F.,Guzzo L.ORCID,Haugan S. V. H.ORCID,Holmes W.,Hormuth F.,Jahnke K.,Kümmel M.,Kermiche S.,Kiessling A.,Kilbinger M.ORCID,Kitching T.,Kohley R.,Kunz M.,Kurki-Suonio H.,Ligori S.,Lilje P. B.,Lloro I.,Maiorano E.,Mansutti O.ORCID,Marggraf O.,Markovic K.,Marulli F.ORCID,Massey R.,Maurogordato S.,McCracken H. J.ORCID,Medinaceli E.,Melchior M.,Meneghetti M.,Merlin E.,Meylan G.,Moscardini L.,Munari E.,Nakajima R.,Niemi S. M.,Nightingale J.,Padilla C.,Paltani S.,Pasian F.,Pedersen K.,Pettorino V.,Pires S.,Poncet M.,Popa L.,Pozzetti L.,Raison F.,Renzi A.,Rhodes J.,Riccio G.,Romelli E.,Roncarelli M.,Rossetti E.,Saglia R.ORCID,Sapone D.,Sartoris B.,Scaramella R.ORCID,Schneider P.,Scodeggio M.,Secroun A.,Seidel G.,Sirignano C.,Sirri G.,Stanco L.,Tallada-Crespí P.,Tavagnacco D.ORCID,Taylor A. N.,Tereno I.,Toledo-Moreo R.,Torradeflot F.,Tutusaus I.,Valenziano L.ORCID,Vassallo T.,Wang Y.,Weller J.,Zacchei A.,Zoubian J.,Andreon S.,Bardelli S.,Boucaud A.ORCID,Farinelli R.,Graciá-Carpio J.,Maino D.,Mauri N.,Mei S.,Morisset N.,Sureau F.,Tenti M.,Tramacere A.ORCID,Zucca E.,Baccigalupi C.,Balaguera-Antolínez A.,Biviano A.,Blanchard A.,Borgani S.ORCID,Bozzo E.,Burigana C.,Cabanac R.,Cappi A.,Carvalho C. S.,Casas S.ORCID,Castignani G.,Colodro-Conde C.,Cooray A. R.,Coupon J.,Courtois H. M.,Cucciati O.,Davini S.,De Lucia G.ORCID,Dole H.ORCID,Escartin J. A.,Escoffier S.,Fabricius M.,Farina M.,Finelli F.,Ganga K.ORCID,Garcia-Bellido J.,George K.,Giacomini F.,Gozaliasl G.,Hook I.,Huertas-Company M.ORCID,Joachimi B.,Kansal V.,Kashlinsky A.,Keihanen E.,Kirkpatrick C. C.,Lindholm V.,Mainetti G.,Maoli R.,Marcin S.,Martinelli M.,Martinet N.,Maturi M.ORCID,Metcalf R. B.,Morgante G.,Nucita A. A.,Patrizii L.,Peel A.,Pollack J. E.,Popa V.,Porciani C.,Potter D.,Reimberg P.,Sánchez A. G.,Schirmer M.ORCID,Schultheis M.,Scottez V.,Sefusatti E.,Stadel J.,Teyssier R.,Valieri C.,Valiviita J.,Viel M.,Calura F.,Hildebrandt H.

Abstract

The Euclid Space Telescope will provide deep imaging at optical and near-infrared wavelengths, along with slitless near-infrared spectroscopy, across ~15 000deg2 of the sky. Euclid is expected to detect ~12 billion astronomical sources, facilitating new insights into cosmology, galaxy evolution, and various other topics. In order to optimally exploit the expected very large dataset, appropriate methods and software tools need to be developed. Here we present a novel machine-learning-based methodology for the selection of quiescent galaxies using broadband Euclid IE, YE, JE, and HE photometry, in combination with multi-wavelength photometry from other large surveys (e.g. the Rubin LSST). The ARIADNE pipeline uses meta-learning to fuse decision-tree ensembles, nearest-neighbours, and deep-learning methods into a single classifier that yields significantly higher accuracy than any of the individual learning methods separately. The pipeline has been designed to have 'sparsity awareness', such that missing photometry values are informative for the classification. In addition, our pipeline is able to derive photometric redshifts for galaxies selected as quiescent, aided by the 'pseudo-labelling' semi-supervised method, and using an outlier detection algorithm to identify and reject likely catastrophic outliers. After the application of the outlier filter, our pipeline achieves a normalised mean absolute deviation of ≲0.03 and a fraction of catastrophic outliers of ≲0.02 when measured against the COSMOS2015 photometric redshifts. We apply our classification pipeline to mock galaxy photometry catalogues corresponding to three main scenarios: (i) Euclid Deep Survey photometry with ancillary ugriz, WISE, and radio data; (ii) Euclid Wide Survey photometry with ancillary ugriz, WISE, and radio data; and (iii) Euclid Wide Survey photometry only, with no foreknowledge of galaxy redshifts. In a like-for-like comparison, our classification pipeline outperforms UVJ selection, in addition to the Euclid IEYE, JEHE and uIE, IEJE colour-colour methods, with improvements in completeness and the F1-score (the harmonic mean of precision and recall) of up to a factor of 2.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3