Once in a blue stream

Author:

Martínez-Delgado David,Roca-Fàbrega Santi,Gil de Paz Armando,Erkal Denis,Miró-Carretero Juan,Makarov Dmitry,Voggel Karina T.,Leaman Ryan,Bolchin Walter,Pearson Sarah,Donatiello Giuseppe,Rubtsov Evgenii,Akhlaghi Mohammad,Gomez-Flechoso M. Angeles,Raji Samane,Lang Dustin,Block Adam,Gallego Jesus,Carrasco Esperanza,García-Vargas María Luisa,Iglesias-Páramo Jorge,Pascual Sergio,Cardiel Nicolas,Pérez-Calpena Ana,Castillo-Morales Africa,Gómez-Alvarez Pedro

Abstract

Aims. In this work we study the striking case of a narrow blue stream with a possible globular cluster-like progenitor around the NGC 7241 galaxy and its foreground dwarf companion. We want to figure out if the stream was generated by tidal interaction with NGC 7241 or if it first interacted with the foreground dwarf companion and later both fell together toward NGC 7241. Methods. We used four sets of observations, including a follow-up spectroscopic study of this stream based on data taken with the MEGARA instrument at the 10.4 m Gran Telescopio Canarias using the integral field spectroscopy mode, the Mount Lemmon 0.80 m telescope, the Telescopio Nazionale Galileo, the DESI Imaging Legacy surveys, and GALEX archival data. We also used high-resolution zoomed-in cosmological simulations. Results. Our data suggest that the compact object we detected in the stream is a foreground Milky Way halo star. Near this compact object we detect emission lines overlapping a less compact, bluer, and fainter blob of the stream that is clearly visible in both ultraviolet and optical deep images. From its heliocentric systemic radial velocity derived from the [O III]λ5007 Å lines (Vsyst = 1548.58 ± 1.80 km s−1) and new UV and optical broadband photometry, we conclude that this overdensity could be the actual core of the stream, with an absolute magnitude of Mg ∼ −10 and a g − r = 0.08  ±  0.11, consistent with a remnant of a low-mass dwarf satellite undergoing a current episode of star formation. From the width of the stream and assuming a circular orbit, we calculate that the progenitor mass can be typical of a dwarf galaxy, but it could also be substantially lower if the stream is on a very radial orbit or if it was created by tidal interaction with the companion dwarf instead of with NGC 7241. These estimates also suggest that this is one of the lowest mass streams detected to date beyond the Local Group. Finally, we find that blue stellar streams containing star formation regions are commonly predicted by high-resolution cosmological simulations of galaxies lighter than the Milky Way. This scenario is consistent with the processes explaining the bursty star formation history of some dwarf satellites, which are followed by a gas depletion and a fast quenching once they enter within the virial radius of their host galaxies for the first time. Thus, it is likely that the stream’s progenitor is undergoing a star formation burst comparable to those that have shaped the star formation history of several Local Group dwarfs in the last few gigayears.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3