Tracking of magnetic helicity evolution in the inner heliosphere

Author:

Alberti T.,Narita Y.,Hadid L. Z.,Heyner D.,Milillo A.,Plainaki C.,Auster H.-U.,Richter I.

Abstract

Context. Magnetic helicity is one of the invariants in ideal magnetohydrodynamics, and its spectral evolution has a substantial amount of information to reveal the mechanism that are behind turbulence in space and astrophysical plasmas. Aims. The goal of our study is to observationally characterize the magnetic helicity evolution in the inner heliosphere by resolving the helicity transport in a scale-wise fashion in the spectral domain. Methods. The evolution of the magnetic helicity spectrum in the inner heliosphere was tracked using a radial alignment event achieved by Parker Solar Probe at a distance of 0.17 astronomical units (AU) from the Sun and BepiColombo at 0.58 AU with a delay of about 3.5 days. Results. The reduced magnetic helicity resolved in the frequency domain shows three main features: (1) a coherent major peak of a highly helical component at the lowest frequency at about 5 × 10−4 Hz, (2) a damping of helicity oscillation at the intermediate frequencies from 10−3 to 10−2 Hz when observed at 0.58 AU, and (3) a coherent nonhelical component in the ion-kinetic range at frequencies of about 0.1 − 1 Hz. Conclusions. Though limited in the frequency range, the main message from this work is that the solar wind develops into turbulence by convecting large-scale helicity components on the one hand and creating and annihilating helical wave components on the other hand. Excitation of waves can overwrite the helicity profile in the inner heliosphere. By comparing this with the typical helicity spectra at a distance of 1 AU (that is, a randomly oscillating helicity sign in the intermediate frequency range up to about 1 Hz), the helicity evolution reaches a nearly asymptotic state at the Venus orbit (about 0.7 AU) and beyond.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3