The cosmic waltz of Coma Berenices and Latyshev 2 (Group X)

Author:

Olivares J.ORCID,Lodieu N.ORCID,Béjar V. J. S.,Martín E. L.ORCID,Žerjal M.ORCID,Galli P. A. B.ORCID

Abstract

Context. Open clusters (OCs) are fundamental benchmarks where theories of star formation and stellar evolution can be tested and validated. Coma Berenices (Coma Ber) and Latyshev 2 (Group X) are the second and third OCs closest to the Sun, making them excellent targets to search for low-mass stars and ultra-cool dwarfs. In addition, this pair will experience a flyby in 10–16 Myr, making it a benchmark to test pair interactions of OCs. Aims. We aim to analyse the membership, luminosity, mass, phase-space (i.e. positions and velocities), and energy distributions for Coma Ber and Latyshev 2 and test the hypothesis of the mixing of their populations at the encounter time. Methods. We developed a new phase-space membership methodology and applied it to Gaia data. With the recovered members, we inferred the phase-space, luminosity, and mass distributions using publicly available Bayesian inference codes. Then, with a publicly available orbit integration code and members’ positions and velocities, we integrated their orbits 20 Myr into the future. Results. In Coma Ber, we identified 302 candidate members distributed in the core and tidal tails. The tails are dynamically cold and asymmetrically populated. The stellar system called Group X is made of two structures: the disrupted OC Latyshev 2 (186 candidate members) and a loose stellar association called Mecayotl 1 (146 candidate members), and both of them will fly by Coma Ber in 11.3 ± 0.5 Myr and 14.0 ± 0.6 Myr, respectively, and each other in 8.1 ± 1.3 Myr. Conclusions. We study the dynamical properties of the core and tails of Coma Ber and also confirm the existence of the OC Latyshev 2 and its neighbour stellar association Mecayotl 1. Although these three systems will experience encounters, we find no evidence supporting the mixing of their populations.

Funder

Agencia Estatal de Inves- tigación del Ministerio de Ciencia e Innovación

Con- sejería de Economía, Conocimiento y Empleo del Gobierno de Canarias and the European Regional Development Fund

São Paulo Research Foundation

European Union ERC, SUBSTELLAR

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3