The outburst of the changing-look AGN IRAS 23226-3843 in 2019

Author:

Kollatschny W.,Grupe D.,Parker M. L.,Ochmann M. W.,Schartel N.,Romero-Colmenero E.,Winkler H.,Komossa S.,Famula P.,Probst M. A.,Santos-Lleo M.

Abstract

Aims. IRAS 23226-3843 has previously been classified as a changing-look active galactic nucleus (AGN) based on observations taken in the 1990s in comparison to X-ray data (Swift, XMM-Newton, and NuSTAR) and optical spectra taken after a very strong X-ray decline in 2017. In 2019, Swift observations revealed a strong rebrightening in X-ray and UV fluxes. We aimed to study this outburst in greater detail. Methods. We took follow-up Swift, XMM-Newton, and NuSTAR observations of IRAS 23226-3843 together with optical spectra (SALT and SAAO 1.9 m telescope) from 2019 until 2021. Results. IRAS 23226-3843 showed a strong X-ray and optical outburst in 2019. It varied in the X-ray continuum by a factor of 5 and in the optical continuum by a factor of 1.6 within two months. This corresponds to a factor of 3 after correction for the host galaxy contribution. The Balmer and Fe II emission-line intensities showed comparable variability amplitudes during the outburst in 2019. The Hα emission-line profiles of IRAS 23226-3843 changed from a blue-peaked profile in the years 1997 and 1999 to a broad double-peaked profile in 2017 and 2019. However, there were no major profile variations in the extremely broad double-peaked profiles despite the strong intensity variations in 2019. One year after the outburst, IRAS 23226-3843 changed its optical spectral type and became a Seyfert type 2 object in 2020. Blue outflow components are present in the optical Balmer lines and in the Fe band in the X-rays. A deep broadband XMM-Newton/NuSTAR spectrum was taken during IRAS 23226-3843’s maximum state in 2019. This spectrum is qualitatively very similar to a spectrum taken in 2017, but by a factor of 10 higher. The soft X-ray band appears featureless. The soft excess is well modeled with a Comptonization model. A broadband fit with a power-law continuum, Comptonized soft excess, and Galactic absorption gives a good fit to the combined EPIC-pn and NuSTAR spectrum. In addition, we see a complex and broadened Fe K emission-line profile in the X-rays. The changing-look character in IRAS 23226-3843 is most probably caused by changes in the accretion rate – based on the short-term variations on timescales of weeks to months.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3